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Preface

The 10th Information Security Conference (ISC 2007) was held in Valparáıso,
Chile, October 9–12, 2007. ISC is an annual international conference covering
research in theory and applications of information security, aiming to attract
high quality papers in all of its technical aspects. ISC was first initiated as a
workshop (ISW) in Japan in 1997, ISW 1999 was held in Malaysia and ISW
2000 in Australia. The name was changed to the current one when the confer-
ence was held in Spain in 2001 (ISC 2001). The latest conferences were held
in Brazil (ISC 2002), the UK (ISC 2003), the USA (ISC 2004), Singapore (ISC
2005), and Greece (ISC 2006). This year the event was sponsored by the Univer-
sidad Técnica Federico Santa Maŕıa (Valparáıso, Chile), the Support Center for
Advanced Telecommunications Technology Research, Foundation, SCAT(Tokyo,
Japan), Microsoft Corporation, and Yahoo! Research.

Reflecting the conference’s broad scope, this year’s main Program Committee
consisted of a relatively large number (49) of experts. Additionally, given the
timely topic of cryptanalysis and design of hash functions and the NIST hash
competition, the conference also featured a special Hash Subcommittee, chaired
by Arjen Lenstra (EPFL and Bell Labs), as well as a panel on hashing, chaired
by Bill Burr (NIST). The conference received 116 submissions, 29 of which were
selected by the committee members for presentation at the conference, based on
quality, originality and relevance. Each paper was anonymously reviewed by at
least three committee members.

Extended abstracts of 28 of the selected papers (a decision was made that
only papers whose authors could commit to presenting them at the conference
would be published), many revised according to the reviewers’ suggestions, ap-
pear in these proceedings. An important ISC interest is to encourage and pro-
mote student participation. In line with that interest, the ISC 2007 Program
Committee had the pleasure of selecting three student-coauthored papers for
the Best Student Paper award—one from each region ISC rotates among: Asia,
Europe, and the Americas. The papers were, respectively, “Identity-Based Proxy
Re-encryption Without Random Oracles,” by Cheng-Kang Chu and Wen-Guey
Tzeng (National Chiao Tung University, Taiwan), “Detecting System Emula-
tors,” by Thomas Raffetseder, Christopher Kruegel, and Engin Kirda (Technical
University of Vienna, Austria), and “Impossible-Differential Attacks on Large-
Block Rijndael,” by Jorge Nakahara Jr. and Ivan Carlos Pavão (Catholic Uni-
versity of Santos, Brazil). The program also included invited lectures by Hugo
Krawczyk (IBM’s T.J. Watson Research Center, USA), and Brent Waters (SRI
International, USA).

First and foremost, I am extremely grateful to the members of the Pro-
gram Committee and Hash Subcommittee for their investment and effort in the
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process—many times difficult and delicate—of paper review and selection, as
well as to the large number of external reviewers for their valuable help.

Electronic submissions were made possible by the Web Submission and Re-
view Software developed by Shai Halevi, which was hosted at the Universidad
Técnica Federico Santa Maŕıa. Many thanks to Raul Monge for making that
possible—and for his perennial availability when problems arose, to Shai for his
support, and to Debbie Cook and Marcos Kiwi for their help in the handling of
the submissions.

Beyond the hosting of the submission software, Raúl Monge and his team
did a magnificent job managing and taking care of all aspects of the local or-
ganization. I am also most grateful to the general chairs, Masahiro Mambo and
René Peralta, for all their hard work, assistance and advice on a myriad of issues
related to this conference.

Finally, I wish to thank all the authors for submitting their work to ISC 2007,
and the authors of the accepted papers for their contribution to the high technical
quality of the program. As technology evolves and means of communication and
interaction become increasingly more complex and sophisticated, so does the
need not only for guaranteeing their soundness and safety when run in adversarial
settings, but also for novel techniques that actually make them possible. Without
a doubt, the new notions, methods and designs presented in these proceedings
constitute an important step in those directions.

August 2007 Juan A. Garay
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Detecting System Emulators

Thomas Raffetseder, Christopher Kruegel, and Engin Kirda�

Secure Systems Lab, Technical University of Vienna, Austria
{tr,chris,ek}@seclab.tuwien.ac.at

Abstract. Malware analysis is the process of determining the behavior
and purpose of a given malware sample (such as a virus, worm, or Trojan
horse). This process is a necessary step to be able to develop effective
detection techniques and removal tools. Security companies typically an-
alyze unknown malware samples using simulated system environments
(such as virtual machines or emulators). The reason is that these environ-
ments ease the analysis process and provide more control over executing
processes. Of course, the goal of malware authors is to make the analysis
process as difficult as possible. To this end, they can equip their malware
programs with checks that detect whether their code is executing in a
virtual environment, and if so, adjust the program’s behavior accord-
ingly. In fact, many current malware programs already use routines to
determine whether they are running in a virtualizer such as VMware.

The general belief is that system emulators (such as Qemu) are more
difficult to detect than traditional virtual machines (such as VMware)
because they handle all instructions in software. In this paper, we seek
to answer the question whether this belief is justified. In particular, we
analyze a number of possibilities to detect system emulators. Our results
shows that emulation can be successfully detected, mainly because the
task of perfectly emulating real hardware is complex. Furthermore, some
of our tests also indicate that novel technologies that provide hardware
support for virtualization (such as Intel Virtualization Technology) may
not be as undetectable as previously thought.

1 Introduction

The Internet has become an integral part of our lives. Today, we interact with
hundreds of services, do business online, and share information without leaving
the comfort of our offices or homes. Unfortunately, the Internet has turned into
a hostile environment. As the importance of online commerce and business has
increased, miscreants have started shifting their focus to Internet-based scams
and attacks. Such attacks are easy to perform and highly profitable. A popular
technique is to develop malware (such as a Trojan horse or spyware) that is
installed on victims’ machines. Once deployed, the malicious software can then

� This project was supported by the Austrian Science Foundation (FWF) under
grants P-18157 and P-18764, the FIT-IT project Pathfinder, and the Secure Business
Austria competence center.

J. Garay et al. (Eds.): ISC 2007, LNCS 4779, pp. 1–18, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 T. Raffetseder, C. Kruegel, and E. Kirda

be used to capture the victims’ sensitive information (such as passwords or credit
card numbers) and perform illegal online financial transactions.

When an unknown malware sample is obtained by a security organization
such as an anti-virus company, it has to be analyzed in depth. The goal is un-
derstand the actions the malware performs, both to devise defense and detection
mechanisms as well as to estimate the damage it can inflict. To perform the anal-
ysis, running the executable in a virtual machine such as the one provided by
VMware [1] is a popular choice. In this case, the malware can only affect the
virtual PC and not the real one1. A virtual environment also has the benefit
that it offers tight control over program execution, allowing the analyst to pause
the system at any time and inspect the contents of the memory. In addition,
the analyst can make use of snapshots that capture the state of the system at
a certain point in time. This allows us to observe the effects of different actions
(e.g., what happens if the malware process is killed?; what happens if a certain
registry key does not exist?) without having to reinstall the system after each
experiment. Instead, one can just revert back to a previously stored snapshot.

Obviously, an important question is whether a malware program can detect if
it is executed in a virtual environment. If malicious code can easily detect that
it is running in a simulator, it could try to thwart analysis by simply changing
the way it behaves. Unfortunately, it is possible to detect the presence of virtual
machines (VMs) such as VMware. In fact, a number of different mechanisms have
been published [2,3] that explain how a program can detect if it is run inside
a VM. These checks and similar techniques are already used by malware (e.g.,
[4] is using a simple detection technique). Thus, the analysis results obtained
by executing malicious code inside a VM become questionable. Because of the
availability of checks that can identify virtual machines, there is a general belief
among security professionals that software emulation is better suited for analysis
than virtualization. The reason is that an emulator does not execute machine
instructions directly on the hardware, but handles them in software. Also, a
number of malware analysis tools (e.g., Cobra [5] or TTAnalyze [6]) have been
presented recently that claim to be stealthy (that is, undetectable by malicious
code) because they are based on software emulation.

In this paper, we aim to answer the question whether software emulation is
as stealthy as hoped for. Unfortunately, our results show that there are several
possible methods that can be used to distinguish emulated environments from
a real computer. Most of these techniques aim at identifying elements of the
computer hardware that are difficult to faithfully emulate in software. In addi-
tion, we developed a number of specific checks to detect Qemu [7], a popular
system emulator that forms the basis for malware analysis tool such as TTAn-
alyze [6]. These checks allow a program to identify observable differences in the
behavior of the CPU cache, the implementation of the instruction set (such as
bugs present on a particular CPU), MSRs (model-specific processor registers),

1 Note that the software emulating the PC itself may have implementation flaws that
could allow malicious code to break out of the virtual PC. However, such errors are
not common.
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and the I/O system. Furthermore, some of our experiments also indicate that
novel technologies such as the Intel Virtualization Technology may not be as
undetectable as previously thought. Because of the complexity of providing a
virtualized environment that precisely mimics the real system, including its tim-
ing properties, we believe that miscreants have opportunities to identify small
deviations that can be used for detection.
The contributions of this paper are as follows:

– We discuss a number of possible approaches that can be used to distinguish
between an emulated environment and a real computer.

– We describe in detail specific checks that allow a program to detect the
presence of Qemu, a popular system emulator that is used as the basis of
malware analysis tools such as TTAnalyze.

– We examine the extent to which our emulator detection techniques apply to
the novel virtualization technologies recently introduced by processor man-
ufacturers (such as Intel VT).

2 Virtual Machine Monitors (VMMs) and Emulators

Virtual machine monitors (VMMs) and emulators are computer programs that
provide mechanisms to simulate the hardware. Guest software (typically operat-
ing systems) can run within this simulated environment as if they are executed
on real hardware.

2.1 Virtual Machine Monitors (VMMs)

Popek and Goldberg [8] describe a virtual machine (VM) as “an efficient, isolated
duplicate of the real machine.” Furthermore, they define the key characteristics
of a VMM as follows:

1. The VMM provides an environment for programs, which is essentially identi-
cal to the original machine. Any program run under the VMM should exhibit
an effect identical to that demonstrated if the program had been run on the
original machine directly, with the possible exception of differences caused
by the availability of system resources and differences caused by timing de-
pendencies.

2. Programs that run in this environment show at worst only minor decreases in
speed. A statistically significant amount of instructions need to be executed
on the real hardware without interception of the VMM.

3. The VMM is in complete control of system resources. That is, it is not
possible for a program running under the VMM to access resources not
explicitly allocated to it. The VMM is able to regain complete control of
(possibly already allocated) resources at any time.

The second point is important to be able to distinguish between VMMs and
emulators. Emulators do not execute code directly on hardware without inter-
cepting the execution (see Section 2.2). Thus, emulators typically cause a de-
crease in speed. VMMs on the other hand, allow execution times close to native
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speed. To support virtualization, a processor must meet three requirements.
These are defined by Robin and Irvine [2] as follows:

Requirement 1. The method of executing non-privileged instructions
must be roughly equivalent in both privileged and user mode. [. . . ]
Requirement 2. There must be a method such as a protection system
or an address translation system to protect the real system and any other
VMs from the active VM.
Requirement 3. There must be a way to automatically signal the VMM
when a VM attempts to execute a sensitive instruction. It must also be
possible for the VMM to simulate the effect of the instruction.

A sensitive instruction is an instruction that, when executed by a virtual ma-
chine, would interfere with the state of the underlying virtual machine monitor.
Thus, a VMM cannot allow a VM to execute any of these instructions directly on
the hardware [2]. Unfortunately, it is not always possible for a VMM to recognize
that a virtual machine attempts to execute a sensitive operation, especially on
the Intel IA-32 architecture.

The IA-32 architecture’s protection mechanism recognizes four privilege levels,
numbered from 0 to 3. A higher number means lesser privileges. Usually, critical
software such as the kernel of an operating system is executed with privilege
level 0. Other, less critical software is executed with less privileges. Instructions
that can only be executed in the most privileged level 0 are called privileged
instructions. If a privileged instruction is executed with a privilege level that is
not 0, a general-protection exception (#GP) is thrown [9].

Typically, VMMs run in privileged mode (privilege level 0) and a VM runs in
user mode (privilege level > 0). If a VM calls a privileged instruction, it causes a
general-protection exception (because the privileged instruction is executed with
a privilege level greater than 0). The VMM can then catch the general-protection
exception and respond to it. If all sensitive instructions have to be executed in
privileged mode, a processor is considered to be virtualizable. That is, the VMM
can catch every exception generated by the execution of sensitive instructions
and emulate their proper behavior. Problems occur if there are sensitive, unpriv-
ileged instructions, as these do not cause exceptions. Unfortunately, this is the
case for the IA-32 architecture, whose instruction set includes seventeen sensi-
tive, unprivileged instructions, making the IA-32 architecture unvirtualizable [2].
This property can be exploited to detect that code is running in a virtual ma-
chine. A well-known example is the RedPill code developed by Rutkowska [3],
which makes use of the SIDT Store Interrupt Descriptor Table Register.

2.2 Emulators

An emulator is a piece of software that simulates the hardware, and a CPU emu-
lator simulates the behavior of a CPU in software. An emulator does not execute
code directly on the underlying hardware. Instead, instructions are intercepted
by the emulator, translated to a corresponding set of instructions for the tar-
get platform, and finally executed on the hardware. Thus, whenever a sensitive



Detecting System Emulators 5

instruction is executed (even when it is unprivileged), the system emulator is in-
voked and can take an appropriate action. This property makes system emulators
invisible to detection routines such as RedPill, and as a result, an appealing en-
vironment for malware analysis. Unlike with virtualization, the simulated guest
environment does not even have to have the same architecture as the host pro-
cessor (e.g., it is possible to execute code compiled for the IA32 instruction set
as a guest on a Power PC hardware or vice versa).

There are two popular techniques to implement a CPU emulator; interpre-
tation and (variations of) dynamic translation. An interpreter reads every in-
struction, translates it, and finally executes it on the underlying hardware. The
simplest form of a dynamic translators take one source instruction, translate
it and cache it. If a instruction is cached and needed again, the translator can
use the cached code. The dynamic translation technique can be extended by
translating blocks of instructions instead of single instructions [10].

The big disadvantage of emulators is the incurred performance penalty. In
general, every instruction (or sequence of instructions) has to be analyzed and
finally executed on the underlying hardware. Even though techniques such as
dynamic translation and caching can be used to speed up the execution, em-
ulators do not reach the speed of real hardware or VMMs. However, the fact
that instructions are read and interpreted makes emulators powerful tools. In
particular, it enables emulators to fake instructions.

For our experiments, we used Qemu [7], an open source system emulator.
The software offers a “full system emulation mode”, where the processor and
periphery is emulated, and a “user mode emulation”, where Qemu can launch
executables compiled for one CPU on another CPU [7]. In our work, we focus
on the full system emulation mode. For more information about Qemu see [7]
and [11]. Note that we do not consider the Qemu acceleration mode [12], which
executes (most) code directly on the hardware. The reason is that in this mode,
Qemu behaves similar to a classic virtual machine and no longer as a system
emulator (and thus, can be detected similar to VMware).

3 General Detection Vectors

In this section, we provide an overview of possible approaches to detect emulated
environments. To this end, we have to identify software whose execution differs in
some observable fashion from the direct execution on hardware. In the following
Section 4, we discuss concrete techniques that allow a program to determine that
it is running in an emulated environment on top of Qemu.

3.1 Differences in Behavior

The first property of VMMs [8] states that a virtualized environment should
behave “essentially identical to the original machine” and that “any program
run under the VMM should exhibit an effect identical with that demonstrated
if the program had been run on the original machine directly” (see Section 2.1).
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Hence, this property should also hold for emulators. Therefore, executing the
same piece of code in emulated and real environments should lead to the same
results in order to have a complete and perfect emulation. If any difference
can be found, one can detect emulated environments. Of particular interest are
differences between the ways a real CPU and an emulated CPU behave.

CPU Bugs. Modern CPUs are complex devices. They implement the speci-
fication of a given instruction set. However, due to failures in the design and
implementation, some instructions do not behave as specified. Every processor
family has its typical bugs, and the presence or absence of specific bugs might
allow us to distinguish between a real and an emulated CPU (assuming that the
emulated CPU does not reproduce specific bugs per default). Moreover, based
on the information about the processor-model-specific bugs, it might even be
possible to precisely determine a specific processor model. That is, we envision
the possibility to leverage CPU bugs to create processor fingerprints. To obtain
information about CPU bugs, we can draw from public documentation provided
by the chip manufacturers.

Model-Specific Registers. Another possible way to distinguish between the
behavior of emulated and real CPUs are model-specific registers (MSRs). Model-
specific registers typically handle system-related tasks and control items such as
the debug extensions, the performance-monitoring counters, the machine-check
architecture, and the memory type ranges (MTRRs) [9]. Note that these registers
are machine-dependent. That is, certain registers are only available on specific
processor models. Furthermore, the attempt to access a reserved or unimple-
mented MSR is specified to cause a general protection exception [13,14,15]. Thus,
one can imagine a technique in which the model-specific registers of processors
are enumerated to generate a specific fingerprint for different CPU models. The
idea is that because of the highly system-dependent character of these registers,
it might be possible that emulators do not support MSRs and, therefore, could
be successfully detected. This analysis includes checking the availability of MSRs
as well as interpreting their contents. A list of the MSRs of the Intel processors
can be found in [15].

3.2 Differences in Timing

The performance of an application running in a virtual environment cannot be as
high as on real hardware (see Section 2.1). This is because additional work such
as translation or interception has to be done. Clearly, the absolute performance
in an emulated environment is lower than that on the real hardware. However,
using absolute performance values to detect virtual environments is difficult,
as most computers differ with regards to hardware configurations. Performance
results may even vary on the same hardware when using different operating
systems and/or working loads.

Relative Performance. To address the problem that absolute performance val-
ues are unreliable when used to detect emulated environments, another approach
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is to use what we call relative performance. With relative performance, a system
is characterized by the performance ratio of two (or more) operations executed
on a system. For example, one can compare the time that it takes to execute
two different instructions to obtain a relative performance measure for a system.
Of course, the choice of these instructions is important. Lang [16] suggested to
compare the performance of accessing the control registers CR0 and CR3 with
the performance of a simple NOP (no operation) instruction. Relative perfor-
mance measurements can be created for emulated systems as well as for real
environments. If the indicators between execution in real environments and vir-
tual environments differ significantly, it shows that the execution times of the
instructions did not change homogeneously. It is also possible to use the indica-
tors generated on real environments as benchmarks that can later be used for
comparison with indicators generated in virtual environments.

Another interesting aspect of relative performance is caching. The basic idea
is to observe the effects caching has on real and emulated environments. To
this end, a function is executed a number of times, and its execution time is
measured. We expect that the first run will be much slower than all subsequent
ones, because data and instructions will be cached after the first iteration. Then,
we turn off caching and repeat the same test. This timing analysis can be used
to examine the presence and effectiveness of caches. Because a processor cache
is difficult to simulate, emulators may not support the CPU cache or may not
support CPU cache control.

3.3 Hardware Specific Values

In simulated environments, all peripheral devices have to be emulated. These
virtual devices include controllers, IDE/SCSI devices, and graphic cards. Cer-
tain emulators implement the virtual devices in a characteristic manner. Thus,
various pieces of the emulated hardware are characteristic for certain emulators.
Also, it might be possible to extract characteristic strings and hardware specific
properties from devices. These strings include default vendor names, product
information, and MAC addresses [16]. Most of today’s hardware also includes
monitoring software. By accessing these values in emulated environments, it is
possible to determine differences to real hardware.

4 Results and Implementation Details

Based on the general detection vectors outlined above, this section provides a
detailed discussion of our techniques to identify the system emulator Qemu [11].
While the results in this section are specific to Qemu, many ideas can be trivially
applied to other emulators as well. Also, in some cases, we repeated tests under
VMware. The goal was to determine whether a specific test to identify emulators
would also apply to virtualizers.

We performed our experiments on an Intel Pentium 4 processor as well as on
an Intel Core 2 Duo processor. The guest and host operating system used was
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Linux Debian Testing with kernel version 2.6.16. Qemu was used with version
0.8.2, and VMware was used with version 5.5.2. We did not use the Qemu ac-
celeration module [12] so that we could test the feature of the system emulator
rather than that of the VMM.

4.1 Using CPU Bugs to Identify a Processor

This section describes our approach to fingerprint the CPU using CPU bugs.
Here, we focus only on the Intel Pentium 4 processor. The document “Intel
Pentium 4 Processor - Specification Update” [17] contains 104 errata, 45 of them
are without a plan to fix (as of December 2006). We searched the document for
errata that were not scheduled for fixing and seemed to be reproducible. Out of
the 45 without a plan to fix, we selected the following two to implement:

Errata N 5: Invalid opcode 0FFFh Requires a ModRM Byte: 0FFFh
is an invalid opcode that causes the processor to raise an invalid opcode excep-
tion (undefined opcode UD). This opcode does not require a ModR/M byte (the
ModR/M byte is part of an instruction that immediately follows the opcode,
typically specifying the instruction’s addressing format). On the Pentium 4 pro-
cessor, however, this opcode raises a page or limit fault (instead of the expected
invalid opcode exception) when the “corresponding” ModR/M byte cannot be
accessed [17].

To test for this bug, we first allocate two pages in memory. The instruction
with opcode 0FFFh is put at the very end of the first page. In the next step, we
use the Linux mprotect system call to remove all access permissions from the
second page. Finally, the code at the end of the first page is invoked. On Pentium
4 processors, we receive a segmentation fault (the page fault is processed by the
kernel and a segmentation fault is sent to the user mode program), because the
processor attempts to load the byte following the opcode as the ModR/M byte.
This fails, because the page is marked as not accessible. With Qemu and non-
Intel Pentium 4 processors, the invalid opcode on the first page is sufficient to
raise an exception.

Errata N 86: Incorrect Debug Exception (#DB) May Occur When
a Data Breakpoint is Set on an FP Instruction: The IA-32 architecture
contains extensions for debugging. These include various debug registers and
debug exceptions. A complete description of the debug facilities can be found
in [15]. An incorrect debug exception (#DB) may occur if a data breakpoint is
placed on a floating point instruction. More precisely, the exception occurs if the
floating point instruction also causes a floating point event [17].

To test for this bug, we set a data hardware breakpoint on a floating point
instruction. In the next step, we have to make this instruction raise an exception.
To this end, we used the FDIV (floating point division) inststruction to cause
a division by zero exception. Our tests show that on Pentium 4 machines, the
machine halts because the processor raises an incorrect debug exception (i.e., a
data breakpoint set on an instruction should not raise a debug exception). This
did not occur with Qemu or non-Pentium 4 processors.
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4.2 Using Model-Specific Registers (MSRs) to Identify a Processor

According to Intel’s software developer’s manual [13,14,15], trying to access a
reserved or unimplemented model-specific register (MSR) causes a general pro-
tection (#GP) exception. However, Qemu did not raise any exceptions when
trying to access a reserved or unimplemented MSR. Hence, Qemu can be easily
detected using this approach.

In our particular test, we attempt to write to the reserved MSR IA32 MCG -
RESERVED1 (number 18BH) (for list of the MSRs of the Intel processors see [15])
with the appropriate WRMSR instruction, using the following GNU C code:

asm volatile("WRMSR;" : : "c" (0x18b));//input: IA32_MCG_RESERVED1

This code, run in a kernel module (MSRs can only be accessed in privileged
mode), should result in a general protection fault. Executed on real hardware
(Intel Pentium 4 and Intel Core 2 Duo), it behaves as expected. The same code
executed in a Qemu environment does not raise any exception.

Extending the idea above, we can generate a fingerprint for a specific processor
by checking for the existence of certain MSRs. To this end, if a given MSR exists
on the CPU. To test the existence of a register, we use the rdmsr safe macro
defined in the Linux kernel. This macro defines the assembler code for accessing
a specified MSR and includes exception handling code. A user mode program
accesses this kernel module using the character device. This user mode program
can now extract a list of all existing MSRs. Then, it can compare this list with a
database that stores the available MSRs for known processors to determine the
exact model.

4.3 Instruction Length

In [9], it is stated that “the Intel processor sets a limit of 15 bytes on instruc-
tion length. The only way to violate this limit is by putting redundant prefixes
before an instruction. A general-protection exception is generated if the limit on
instruction length is violated.” We discovered that the CPU emulated by Qemu
does not set this limit.

One of the available prefixes is the Repeat String (REP) operation prefix (for
a comprehensive list of prefixes see [18]). This prefix can be added to a string
instruction and repeats the string instruction a number of times. If this prefix is
repeated more than 14 times consecutively before a string move operation, the
CPU raises an illegal instruction exception. The reason is that the instruction
length limit is violated (e.g., 15 ∗REP (1byte)+1 ∗MOVSB(1byte) > 15bytes).
However, the same instruction executed in a Qemu environment does not raise
this exception. Note that the idea about the REP prefix was first posted in [19].

4.4 Alignment Checking

The IA32 architecture supports alignment checking. When code is run with the
least privileges, alignment of memory addresses can be checked by the CPU.
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To this end, the AM (alignment mask) flag in the CR0 (control register 0)
and the AC (alignment check) flag in the EFLAGS register must be set. When
alignment checking is activated, unaligned memory references generate alignment
exceptions (#AC) [9]. Qemu does not support this processor feature, and thus,
can be distinguished from a real processor.

To test for the existence of the alignment checking feature, we developed a
kernel module that sets the alignment flag in the control register 0 (usually,
this flag is set already by the operating system). Then, a user mode program
sets the alignment check flag in the EFLAGS register and attempts to access an
address that is both unaligned and invalid. If alignment checking is supported, an
alignment exceptions (#AC) is thrown. If alignment checking is not supported,
a segmentation fault occurs, because the CPU tries to access an invalid address.
As expected, this code executed under Qemu results in a segmentation fault,
indicating that alignment checking is not supported by Qemu.

4.5 Relative Performance – Comparison of Instructions

The goal of relative performance tests is to distinguish between real and emu-
lated environments using timing analysis. The idea is to measure the absolute
time that it takes to execute a privileged instruction and compare it to the time
is takes to execute an unprivileged instruction. More precisely, the execution
of an unprivileged instruction serves as the baseline. The execution time of the
privileged instruction is then divided by this baseline time, yielding a relative
performance number. This relative performance number is used to identify a
simulated environment. The rationale is that a real processor has to perform dif-
ferent tasks than a simulated CPU when handling privileged instructions, and
these different tasks manifest themselves by yielding different relative perfor-
mance results.

For our experiment, we used a kernel module developed by Lang [16]. This
kernel module reads either from the control register CR0 or from CR3, and then
writes back the value previously read. To measure the time that it takes to
execute instructions, the processor’s time stamp counter (TSC) is used. Reading
and writing to the control register CR0 (see Figure 1) is relatively faster on both
VMware and Qemu than on real hardware. Interestingly, the relative timings
for VMware and Qemu are very similar. Accessing the control register CR3 (see
Figure 2) shows a significant timing difference between VMware and the real
hardware; the real hardware is up to 100 times faster than VMware. Qemu,
while significantly faster than VMware, is still slower than the real hardware.

4.6 Relative Performance – Cached Instructions

Instruction and data caches have a major influence on the performance of pro-
gram execution. Thus, we were asking the question whether different timing
behavior can be observed between a simulated and a real processor when ex-
ecuting the same piece of code for a large number of times. The idea is that
caching will speed up the execution of all iterations after the first one. However,
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Fig. 1. Reading/Writing CR0
(TSC) on the Pentium 4 1.8 GHz

Fig. 2. Reading/Writing CR3
(TSC) on the Pentium 4 1.8 GHz

the relative speed-up could be different between depending on the environment.
In addition, the timing tests were repeated when caching was disabled. Again,
we wished to determine whether a different timing behavior could be seen.

For the cache timing tests, we wrote a function that contained a loop. This
loop executed a sequence of simple, arithmetic instructions 100 times. For each
test, this function was invoked six times (each invocation was called a run).
When caching is enabled, we expect the first invocation (the first run) to last
slightly longer. The reason is that the caches have to be filled. Starting from the
second run, all others last shorter. To measure the execution time, the RDTSC
instruction (Read Time-Stamp Counter) is used. Because the CPU supports
out-of-order execution (that is, instructions are not necessarily executed in the
order they appear in the assembler code), we need an instruction that forces all
previous instructions to complete before we read the TSC. The CPUID instruc-
tion is one of these serializing instructions [20]. The timing code was executed
in a kernel module. This allowed us to disable interrupts for each test run and
therefore, to guarantee that only the timing of our test code rather than that of
the interrupts handlers was measured and led to repeatable results.

After the first set of experiments with caching, we disabled caching and re-
peated the experiments. To disable caching, the processor has to enter the no-fill
cache mode (i.e., set the CD flag in control register CR0 to 1 and the NW flag
to 0) and all caches need to be flushed using the WBINVD instruction. Finally,
the MTRRs need to be disabled and the default memory type has to be set
to uncached or all MTRRs have to be set for the uncached memory type. [9]
Turning on the cache again works the opposite way.

The charts showing the results of our experiments in this section are structured
as follows: We executed six independent test runs. Each of the test runs consisted
of six calls to one function. In the chart, the first bar of each test run shows the
time (in cycles) of the first call, the second bar shows the time of the second call,
and so on. The results are shown in Figures 3 to 8.

Two main conclusions can be distilled from the figures. One is that caching
has a much more pronounced effect on the execution times when an emulated
(or virtual) environment is used. The second conclusion is that for simulated
environments, the timing results are the same, independent of whether caching
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Fig. 3. Real Hardware (Cache On)
- Pentium 4 1.8 GHz

Fig. 4. Real Hardware (Cache Off)
- Pentium 4 1.8 GHz

Fig. 5. Qemu (Cache On) Fig. 6. Qemu (Cache Off)

Fig. 7. VMware (Cache On) Fig. 8. VMware (Cache Off)

is active or not. In other words, both Qemu and VMware discard requests of
software to disable caching. Both observations can be leveraged to distinguish
between emulated and real processors.

5 Detecting Hardware-Supported VMMs

This section discusses our preliminary research in detecting virtual machine sys-
tems that make use of hardware extensions recently proposed by the two largest
x86 (IA-32 architecture) processor manufacturers, Intel Corp. and Advanced
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Micro Devices, Inc. (AMD). The specification of Intel’s technique (called Intel
VT: Intel Virtualization Technology) can be found in [21] and [15], and AMD’s
technique (called AMD-V: AMD Virtualization) can be found in [22] and [23].
Here, we only focus on the virtualization technique used by Intel processors.

5.1 The Intel Virtualization Technology (Intel VT)

In Section 2.1, we outlined the problems when attempting to virtualize proces-
sors that are based on the Intel IA-32 architecture. In particular, we discussed
the problem of seventeen sensitive, but unprivileged instructions that make this
architecture unvirtualizable. To address this problem, Intel introduced appro-
priate virtual-machine extensions. The key idea of these extensions is to provide
a separate operation mode for VMMs. The operation mode for VMMs is called
the root mode, while the mode for guest systems (virtual machines) is called
the non-root mode. The code executed in root mode runs with higher privileges
than all the code in the guest systems (including, of course, the guest operating
system). If a guest system, even when running in processor level 0, attempts to
execute instructions that would interfere with the state of other guest systems or
the VMM, the processor recognizes this instruction and notifies the VMM. The
VMM can then react to this instruction, and in particular, emulate the proper
behavior to the guest, but limit (or prevent) its effects on the state of other
virtual machines or the VMM itself. For example, moving a register to one of
the control registers (e.g., CR0) would certainly interfere with the VMM and
other running virtual machines. However, this instruction causes a VM exit and
an immediate trap to the VMM. The VMM can then restrict the effects of the
instruction and simulate its correct behavior to the guest [15].

The Intel manual [15] states that “there is no software-visible bit whose setting
indicates whether a logical processor is in VMX non-root operation. This fact
may allow a VMM to prevent guest software from determining that it is running
in a virtual machine.” This sounds promising, as it could potentially allow one to
create a analysis environment that would be invisible to malware. Interestingly,
it also opens up completely new possibilities for stealth malware. That is, a
rootkit could install itself as a virtual machine monitor and virtualize the user’s
operating system. In theory, such a rootkit could not be detected by conventional
methods. Prototypes of this type of malware are the well-known BluePill [24],
Vitriol [25], or SubVirt [26]. Unfortunately, despite our requests, we were not
able to get access to either Blue Pill or Vitriol, and thus, could not test our
detection techniques with these rootkits. Instead, we had to focus on the widely
used VMware Workstation 5.5.2 [1], which has support for Intel VT, and the
open source program KVM, a kernel-based virtual machine for Linux that also
leverages the new Intel extension [27].

Timing Analysis. In Section 4.6, we presented a timing analysis that used
cache effects to allow us to distinguish between a system emulator and a real
machine. Recall that system emulators and VMMs use the cache provided by
the underlying hardware. Thus, their cache behavior is very similar to that of
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Fig. 9. KVM (IVT On - Cache
On)

Fig. 10. KVM (IVT On - Cache
Off)

Fig. 11. VMware (IVT On - Cache
On)

Fig. 12. VMware (IVT On - Cache
Off)

real hardware. As expected, code and data that has been accessed recently is
delivered much faster when requested again. Interestingly, however, disabling the
cache in the virtual environment does not lead to any changes in the observed
behavior of the processor. That is, the virtual machine and the system emulator
behaved identically independent of whether caching was enabled or disabled.
Of course, timing results show that execution is significantly slower on a real
machine when caching is disabled.

The discussion above shows that system emulators and traditional VMMs do
not allow the guest system to disable the cache. This provides a straightforward
mechanism for a program to determine whether it is running in a virtual en-
vironment. The question is whether the detection approach also succeeds when
the VMM uses the Intel VT hardware extensions. The results of our analysis are
shown in Figures 9 to 12 (The results of the test runs using the Core 2 Duo pro-
cessor, without any virtualizers or IVT enabled, are comparable to the results on
the Pentium 4 processor (see Figures 3, 4, 7 and 8) and therefore not listed here
again.) It can be clearly seen that our cache timing analysis has the ability of
distinguishing between a virtual environment and real hardware, even when In-
tel VT is used. Of course, a VMM that is aware of our timing tests might attempt
to adjust its behavior such that it appears as real hardware. For example, we
use time stamp counters (TSC) to measure the cycles that our timing program
is executing. Thus, the VMM could modify the value of the TSC appropriately
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whenever we access it (using an instruction that traps into the VMM). Neverthe-
less, even though the TSC can be set to arbitrary values, the VMM would have
to adjust the value depending on the number and the type of executed instruc-
tions. This is a non-trivial task, as any deviation from the expected result would
serve as an indication that the test code is running in a virtual environment.

Also, turning off the cache involves setting a certain bit in the control register
0 (CR0), invalidating the cache (using the WBINVD instruction), and writing
to a certain MSR (using the WRMSRS instruction). All these instructions cause
VMX exit transitions. and it would be possible for the VMM to simply disable
caching on the underlying processor. However, this would slow down the VMM
as well as all other running guest systems executed on the processor. This is
certainly not practical for VMMs in production settings (i.e., a program that
provides an isolated duplicate of the real machine). On the other hand, a rootkit
could simply turn off caching, as its main goal is to remain hidden.

6 Related Work

Malicious code is a significant security problem on today’s Internet. Thus, a large
body of previous work deals with different solutions to detect and analyze mal-
ware. In general, these solutions can be divided into two groups: static analysis
and dynamic analysis techniques.

Static analysis is the process of analyzing a program’s code without actually
executing it. This approach has the advantage that one can cover the entire code
and thus, possibly capture the complete program behavior. A number of static
binary analysis techniques [28,29,30] have been introduced to detect different
types of malware. The main weakness of static analysis is the fact that the code
analyzed may not necessarily be the code that is actually run. In particular, this
is true when the malware makes use of code obfuscation.

Because of the many ways in which code can be obfuscated and the funda-
mental limits in what can be decided statically, dynamic analysis is an important
and popular alternative. Dynamic techniques analyze the code during run-time.
While these techniques are non-exhaustive, they have the significant advantage
that only those instructions are analyzed that the code actually executes. Of
course, running malware directly on the analyst’s computer is not possible, as
the malicious code could easily escape and infect other machines. Furthermore,
the use of a dedicated stand-alone machine requires to reinstall the system after
every test. Thus, the question arises in which environment a malware sample
should be executed.

Virtual machines such as VMware [1] are a common and comfortable choice as
an environment for malware analysis. Unfortunately, malicious code has adapted,
and malware authors increasingly include routines into their creations that check
for the presence of such virtual machines. These checks are actually quite
straightforward, as the Intel IA-32 instruction set contains a number of instruc-
tions that are unvirtualizable [2]. Based on these instructions (and a number of
alternative methods), a variety of detection techniques have been implemented.
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This includes RedPill [3], but there are also other VMware fingerprinting suites
such as “Scooby Doo - VMware Fingerprint Suite” [31]. Recent publications also
deal with general virtualization anomalies [32] and the usage of timing bench-
marks to detect the presence of VMMs [33].

To address the problem of analysis environments that are easy to detect by
malware, researchers have proposed systems based on emulation. For example,
Cobra [5] and TTAnalyze [6] are two malware analysis tools that are based
on full system emulation. While there was a general belief that these system
are stealthier (i.e., less easy to detect), the extent to which this is true was
unclear. In this paper, we analyzed possible approaches that can be used to
identify system emulators. Moreover, we presented a number of concrete checks
that allow us to detect Qemu (the emulator that TTAnalyze [6] is based on).
The work closest to ours is a recent paper by Ferrie [34]. In his paper, Ferrie
demonstrates mechanisms to detect a large number of virtual machine monitors,
but he also addresses the issue of identifying emulators. The difference to this
work is that we present a variety of approaches to detect system emulators, while
Ferrie only focuses on a few specific implementation bugs of system emulators
that incorrectly reproduce the behavior of specific instructions.

Finally, there has been recent work by processor vendors such as Intel and
AMD to provide hardware extensions that help to make a virtual environment
undetectable. While clearly a step into the right direction, there are properties
(especially timing related ones) that are difficult to model precisely in a virtual
environment and thus, provide malicious code with the possibility for detection
(as our preliminary results indicate).

7 Conclusion

In this paper, we presented a number of techniques that can be used to detect sys-
tem emulators. These techniques make use of specific CPU bugs, model-specific
registers (MSRs), instruction length limits, alignment checking, relative perfor-
mance measurements, and specific hardware and I/O features that are difficult
to emulate. The conclusion that we have to draw from our experiments is that
emulators are not necessarily stealthier than virtual machines. It is theoretically
possible to adapt a system emulator to address each of the specific detection
methods that we have outlined above. However, it is still an arms race as the ad-
versary can find new indicators that are not covered yet. The underlying problem
is that virtual machines and system emulators are not written with malicious
code analysis in mind. Thus, it is typically enough to provide a simulated en-
vironment that is sufficiently close to the real system. Unfortunately, as far as
security analysis is concerned, the emulation has to be perfect. Otherwise, the
malware under analysis can discover that it is not running in a real environ-
ment and hence, adapt its behavior. Our experiments also indicate that some of
our tests might be applicable to detect new virtualization technologies recently
introduced by Intel and AMD, making the task of creating a perfectly stealth
analysis environment very difficult.
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Given the discussion in this paper, it may seem as if security researchers are
losing the fight against malware authors with respect to hiding their analysis
infrastructure. However, note that virtualization and system emulation are in-
creasingly gaining popularity among a broad spectrum of computer users. These
environments are not only useful for malware analysis, but also make system
maintenance and deployment much easier. As a result, malicious code cannot
expect any longer that a virtual environment is an indication of an analyst
examining the code. Instead, it could also be a production server that uses vir-
tualization technology.
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Abstract. One of the most crucial development phases of a network in-
trusion detection system is the feature selection one. A poorly chosen set
of features may lead to a significant drop in the detection rate, regardless
of the employed detection method. Despite its importance, we believe,
that this research area lacks of comprehensive studies. Our research pro-
poses a model for mining the best features that can be extracted directly
from the network packets, by ranking them against their statistical prop-
erties during the normal and intrusive stages. As proof of concept, we
study the performance of 673 network features while considering a set
of 180 different tuning parameters. The main contribution of this work
is that it proposes a ranking mechanism to evaluate the effectiveness of
features against different types of attacks, and that it suggests a pool of
features that could be used to improve the detection process.

Keywords: Feature evaluation, Network Intrusion Detection.

1 Introduction

One of the first tasks in the implementation of an Intrusion Detection System
(IDS) is the feature selection phase. This step will definitely influence the perfor-
mance of any detection engine, regardless of the technique that the engine uses.
While we acknowledge that the detection technique is a decisive factor of the
detection process, we also believe that the type of features that a technique uses
plays a heavy role too. Despite its importance, to our knowledge, there appears
to be a lack of research in this domain.

The main aim of this work is to propose a statistical technique for highlighting
the most important features to be used in the detection process. The current work
statistically evaluates 673 network features that are extracted directly from the
network packets. The computed features are defined for the most used protocols
at the Transport, Network, and Network Access layers of the TCP/IP Architec-
ture Model (i.e., IP, ICMP, TCP, and UDP). The evaluation process considers
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the behavior of the features during the attack and normal phases. However, the
proposed model could be successfully applied on higher layer features that can
be extracted from the packet payloads.

Our model also considers the tuning of each feature as an decisive factor that
influence the usefulness of that particular feature. To address this issue, we have
chosen a set of 180 different tuning combinations for each feature. The tuning
parameters are chosen so that they cover a fair range of possible tunings.

Our proof of concept experiments are done on the DARPA Intrusion Detection
and Evaluation Dataset[2]. This dataset still remains the primary source of many
papers due to the labels that it provides, the diversity of attacks that it has,
the amount of captured data, and lack of other more recent available labeled
datasets. In order to process the high number of feature-tuning combinations,
the experimental results were conducted on a Sun V60 computer cluster provided
by our university.

The rest of the paper is organized as follows, Sec. 2 summarizes the state of our
research and related research in this direction of study. Next, Sec. 3 presents the
logics behind the feature tunings that we used. The feature extraction process is
explained in Sec. 4, followed by our statistical evaluation technique for feature
relevancy explained in Sec. 5. The experimental results are presented in Sec. 6.
Finally, the conclusion and possible research directions are specified in the last
section of the work.

2 Background Review

One of the main challenges when dealing with the amount of information that
can be extracted directly from network packets is to create a set of features
that covers most of the information space. The network features are constructed
around the main abstractions of the network security domain such as: packet,
connection, host, and network. The idea of constructing features that will cover
a reasonable part of the information space is especially hard due to the diversity
of data that passes through a network link and the lack of unanimously accepted
network feature classification schema in the research community. Furthermore,
researchers have empirically demonstrated that false correlations between the
features that may be extracted by an IDS/IPS can lead to purer results concern-
ing the accuracy and performance of the detection system [13,12]. For example, if
only 17 carefully selected features are used among all 41 features provided in the
International Knowledge Discovery and Data Mining Competition (KDD-1999)
[1], the detection rate will not change, but the speed of the detection algorithm
will improve by about 50% [12].

There seems to be at least two main types of features that are widely accepted
in the literature. This distinction is done between features that are computed
based on a single TCP connection and features that are computed based on
multiple TCP connections. However, the names of the previously mentioned
categories are different from researcher to researcher. Accordingly, the single
TCP connection features are referred to as Basic Features in [4,5], Essential
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Attributes in [15], Basic Features of individual TCP connection in [1], Basic
TCP Features in [10]. A superset of this feature category that also includes
connectionless protocols is mentioned in [11] as Flow Statistics and in [14] as
Single Connection Dependent Features. Similarly, different names are used for
the second feature category too, such as Derived Features in [4,5], Traffic Features
in [15,1], and Multiple Connection Features in [14]. Furthermore, quite a few
works also recognize that there are two main ways to construct those features
that target interrelationships between different flows as follows: Time Based
Features and Connection Based Features [5,4,15,1,14]. The idea behind their
construction is to use a sliding window over the captured data that is used to
observe and extract their value. In the case of Time Based Feature category the
sliding window specifies a predefined amount of time, while in the case of the
Connection Based Feature category the sliding window specifies the number of
connections that are considered when computing the features.

We recently proposed a new feature classification schema for network intrusion
detection, which allowed us to tackle various aspects that can be extracted at
network level[14]. The proposed schema contains 27 categories that, we believe,
semantically cover all the main feature types that can be extracted from the
network. The detail of this feature classification schema and the reasoning behind
its categories is beyond the scope of this paper; however, we have used this
schema to construct all the 673 features that are analyzed in this study.

3 Feature Tunings

The current work focuses on the performance of each individual feature regard-
less of the feature category that it belongs to. However, different features have
different tuning parameters. Thus, for identifying the set of parameters that
needs to be tuned, the features are grouped based on their underlying imple-
mentation, not based on their semantic definition and meaning. Consequently,
we have basic features, time based features, and connection based features as
primary types of features that we will work with.

Each of the previous groups has different tuning parameters as described in
this section. These parameters heavily influence the effectiveness of each feature
in detecting attacks. Thus, it is of great importance to study multiple tuning
values for each feature while evaluating its performance against attacks.

The Basic Features category consists of all features that can be extracted from
a single packet without requiring any kind of extra information. The feature
candidates for this category can be any field of the datagram such as protocol,
source and destination ports, flags, ICMP Type, to name a few. Extracting these
features is extremely easy and fast since the feature constructor needs to examine
only a single packet at a time. No extra dependency information is required, and
thus, no need for tuning in this case. Even though this category is the easiest
type of features that can be created, it is also the most inefficient one to use
(see Sec. 6). The same cannot be said regarding the time and connection based
features. Each type of feature depends on several factors that naturally lead
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to different values for the same feature(s). As explained in Sec. 5, in order to
evaluate each feature we consider a set of tunings that will allow us to decide if
that particular feature is or is not reliable in attack detection. The logics behind
the tunings that we work with are explained in the next two subsections.

3.1 Time Based Features

There are two main decisions that must be made at the creation of a time interval
(i.e., window size and window granularity-step). These two settings are especially
important since they both influence the speed of the feature extraction process as
well as the size of the memory that will be used. Moreover, theoretically speaking
there is a common expectation that different tunings will detect different types
of attacks (e.g., Bursty vs. Stealthy Attacks).

The window size tuning is self explanatory; it is the size of the time window
interval that is considered when computing this type of features. Common values
for this tuning factor vary from researcher to researcher. Furthermore, an exact
clear cut for the best value is hard to be made especially as this value is network
dependent. Our experiments consider various values of the time window size in
the range of one second and one hour. While we acknowledge that this interval
restriction limits the number of tunings that are studied, we also argue that to
the best of our knowledge most of the window sizes implemented in real systems
are less than several minutes and they don’t even come close to the one hour
interval size. Moreover, as the window size increases the memory consumption
increases too since the behavior of each feature for the past time interval needs
to be stored. We have chosen 30 distinct time window sizes. Since the maximum
time interval is roughly one hour (i.e., 55 minutes and 36 seconds) we could have
linearly split the interval into 30 equal slices and consider those splitting points
as tuning parameters. However, we believe that an exponential based splitting is
more suitable in this case. Consequently, 33% of the tuning factors are within the
first 5 minutes, the next 33% tunings are between 6 and 20 minutes, while the
last 33% covers the 20 minutes to 1 hour interval. This is also justifiable since as
the time interval increases the differences between the number of seconds within
a time interval and the number of seconds between two consecutive intervals
becomes more prominent.

The following formula gives the exact tuning values that we used in our ex-
periments:

τtw(x) = �210 ∗ 1.099x − 230� | ∀x ∈ [1, 30], x ⊂ N∗ (1)

where, x is a natural number denoting the xth tuning sample, and τtw is the
actual value in seconds for the time window size.

The second factor (i.e., window granularity-step), represents the time latency
between two consecutive updates on the time interval. While this should ideally
be as small as possible, in practice having to update a time interval (e.g., one
millisecond) is not desirable, since it will overwhelm the processor. On the other
hand, a large granularity will save a lot of processing power, but will introduce
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delays between the actual and the computed values. For instance, a one minute
granularity will introduce a one minute delay between the actual value that
should have been computed and the computed one. Consequently, the longer
the granularity is the sparser will be two consecutive values of the same feature,
but the faster will be the processing time. In order to experience the effect of
different granularity values for the time window interval we consider 5 different
granularity values as follows:

τg = {1, 2, 4, 5, 10, 20} (2)

where, τg is the actual value in seconds for the time window granularity. We
stopped our analysis at 20 seconds granularity since increasing it further would
basically lead to poorer results. Also, this will not serve our purpose, since based
on our experiments as granularity increases, the system becomes unable in de-
tecting fast attacks, and late in detecting the stealthy ones. As a general tuning
suggestion concerning the granularity factor, we believe that the smaller this
value is, the closer the time features are to the real values, the better the chances
of catching an attack are, and the faster the detection will be. Thus, we have
chosen most of the granularity values close to one second.

Consequently, for each time feature we study, the system will generate 180
tuning values, which represent the combination of 30 different time window sizes
with 6 different granularities. Note that we ignore all tuning combinations (i.e.,
a total of five) that have the time window size smaller than the time granularity,
since we consider those to be meaningless.

3.2 Connection Based Features

Constructing connection based features is of great importance since those fea-
tures are built based on comparisons among different connections. A connection
can be generally defined as the act of exchanging information between two hosts
while using the same source and destination ports (if applicable) and the same
protocol. As stated, this definition applies not only to connection oriented pro-
tocols (e.g., TCP) but also to connectionless protocols (e.g., UDP, and ICMP).

There are two main factors that influence the final value of a feature from this
category. The first factor is the window size of the connection interval. This size
specifies the number of recent connections that are considered when computing
a connection based feature. Ideally the size of the connection interval would
be sufficient enough to extract meaningful data from the network. However,
the longer this connection interval is, the more memory is used to store the
past connections, and the more computational time is needed. Furthermore,
we believe, that finding a “suitable” connection window size is a difficult task,
especially because this differs from network to network and from throughput to
throughput. Consequently, our experiments are run on 30 different connection
window sizes that vary from a size of 3 to approximately 200. We choose this
range because it covers a reasonable interval of possible sizes. To the best of our
knowledge, the largest size interval we encountered in other works was of 100
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connections, but most of the works use even smaller sizes. The 3 to 200 interval
is exponentially divided into 30 distinct slices, by following the same technique
as in the time window based case. Thus, 33% of the tuning values range between
3 and 15 connections, the next 33% are up to 60 connections, wile the last 33%
are within 60 and 200 connections.

The following formula gives the exact tuning values that we used in our
experiments:

τcw(x) = �5 ∗ 1.13x − 3� | ∀x ∈ [1, 30], x ⊂ N∗ (3)

where, x is a natural number denoting the xth tuning sample, and τcw is the
actual value in number of connections for the connection window size.

The second tuning factor for the connection based features emerged as a con-
sequence to the definition of a connection. Recall that a connection is defined
as the act of exchanging information between two hosts. While determining the
beginning and ending of a connection implemented through a connection based
protocol (such as TCP) is straight forward, the same cannot be said about a
connectionless protocol (such as UDP and ICMP). In this case, the beginning
of the connection could be marked as the first packet that is exchanged between
the two hosts (considering also the port pair for UDP); however, determining
the end of the connection is not a trivial task anymore. Consequently, in this
case we consider the lack of activity (i.e., packets exchanged) between the two
hosts as a primary indicator for determining the closing of a connection. Let
us define the connection time to live interval as the time interval between the
last packet exchanged in a connection and the end of that connection. To be
consistent, we apply this mechanism to connection based protocols too. Thus,
once no packets are exchanged for a period longer than the connection time to
live interval, the connection will be automatically closed. As a side effect to this
restriction, the memory is also efficiently utilize. This is especially true in the
case of an on-line system where the efficient resource use is a must, and where
the system does not have the luxury of maintaining an inactive connection for-
ever. In our experiments we used 6 different connection time to live values that
range from 20 seconds to approximately 30 minutes and are defined using the
following equation:

τttl(x) = �15 ∗ 2.209x − 20� | ∀x ∈ [1, 6], x ⊂ N∗ (4)

where, x is a natural number denoting the xth tuning sample, and τttl is the
actual value in seconds for the connection time to live parameter.

Conclusively, for each connection feature that is studied, the system will have
180 tuning values, which represents the combination of 30 different connection
window sizes with 6 different time to live values.

4 The Feature Extraction Process

This section presents the main components of the Feature Extraction Module that
we have implemented. The aim of the design was to have a highly customizable
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Fig. 1. The underlying architecture of the feature extraction module

module, easily extendable, that would allow the extraction of all features that
we previously proposed[14], and would work either on-line or off-line. Figure 1
depicts the high level view of the feature extraction process. The first module is
the Data Reader & Time Reconstruction Module. It is in charge of collecting data
by either sniffing it from a network connection, or extracting it from an already
saved tcpdump file. The Time Reconstruction functionality is needed only in the
case of reading from a tcpdump file since the packet inter-arrival times need to
be considered. This is especially important since the inter-arrival times directly
influence the feature extraction process. To speedup the extraction process, the
replay speed can also be adjusted.

Once this step is done, the synchronized packets are sent to the Connec-
tion Reconstruction and Feature Extraction Module. This module is in charge
of constructing and storing the encountered connections, and of creating the
Time Based Features and the Connection Based Features. It receives as input
the synchronized packets and the current tuning parameters, and it computes
the associated features. The detail description of this module is beyond the scope
of this paper; however, further details can be found our previous work[14].

The final step of the feature extraction process is the attack and normal
profile generation. The task is accomplished by the Statistical Profiler Module.
This module uses the provided attack labels to filter out the intrusive from
the normal behavior of each individual feature, and stores the corresponding
statistical data into uniquely identifiable profiles. Each profile keeps track of
the mean μ and standard deviation σ statistics of a particular feature during
the normal or intrusive behavior. It is known that the features tend to have
different values for different protocols. For instance, the size of the ICMP packets
is expected to be smaller than the size of the TCP packets. Thus, instead of
creating a single profile for the normal behavior of a feature, our system creates
individual normal profiles for each protocol that applies to the current feature.
Let fi represent the ith feature to be analyzed, ξj denote the jth encountered
intrusion, and τk represent the kth tuning factor selected. Consequently, two
types of profiles are defined as follows:

– Normal profile: A normal profile is uniquely identified by a < fi, τk > tuple,
and characterizes a particular feature fi extracted using τk tuning during
the normal network operation. The profile keeps track of the μ(fi, τk) and
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σ(fi, τk) statistics representing the normal mean and standard deviation
during the previously specified scenario.

– Intrusive profile: An intrusive profile is uniquely identified by a < fi, ξj , τk >
tuple, and characterizes a particular feature fi extracted using τk tuning
while under the ξj attack . Similarly, the profile keeps track of the μ(fi, ξj , τk)
and σ(fi, ξj , τk) statistics representing the mean and standard deviation of
the intrusive behavior.

All these statistical profiles are stored in the DB Profiles database, and are
constantly updated. Note that the τk factor depends on the type of the current
feature fi that is analyzed as explained in Sec. 3.

The process of extracting profiles is repeated once for each tcpdump file and
tuning combination, until all the possible combinations are exhausted. In the
current experiment the number of combinations was 3420 as explained later in
Sec. 6. The implementation of this module is done as a combination of C++
and Java languages (i.e., everything except the Profile Extraction Task is im-
plemented in C++), and is compiled/executed under Linux OS. Once all the
profiles are created, the Statistical Extractor Module is invoked as described in
the next section.

5 The Feature Statistical Ranking

The feature statistical ranking process is designed as a 3-tier Statistical Extractor
Module, as depicted in Fig. 2. The module is implemented as a combination of
Java and Matlab languages under Windows OS. Once all the profiles are com-
puted for all the tuning factors and all the input data, the Statistical Extractor
Module is invoked. One of the particularities of this module is that each tier needs
to wait for the previous one to finish its job. Consequently we have introduced
temporary databases between consecutive tiers, so that the intermediary data is
saved. The ultimate goal of this module is to compute the probability of each
individual feature fi to be able to detect one of the main types of attacks defined
in the dataset (i.e., Denial of Service (DoS), Probing, Remote to Local (R2L),
and User to Root (U2R) attacks as explained in the next section). Thus, let us
define P (fi|DoS), P (fi|Probe), P (fi|R2L), P (fi|U2R) as the probability of fi to
be effective in the detection of DoS, Probe, R2L and U2R attacks, respectively.
The higher a probability is the better the attack detection will be. Once all of

Fig. 2. The underlying architecture of the Statistical Extractor Module
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these probabilities are computed, the features are sorted by their effectiveness
(i.e., probability) and reported in a table like structure as listed in Sec. 6. This
final step is not illustrated in Fig. 2 due to its simplicity. The following three
subsections describe in detail each of the three tiers that exist in the Statistical
Extractor Module.

5.1 Statistical Extractor 1st Tier

The aim of this module is to compute the probability of a certain feature fi in
detecting a given attack ξj when that feature is created using the τk tuning factor.
To do this, the current subcomponent searches the Profiles DB and extracts the
corresponding normal and abnormal profiles.

Each profile can be pictured as one statistical distribution created by that
particular feature. Furthermore, each profile keeps the μ and σ of that distri-
bution. Our basic assumption is that fi is influenced by ξj if its value signifi-
cantly changes from the normal one during the attack period. Consequently, this
change will naturally lead to a change in the features mean and standard devia-
tion. Thus, we would expect that the statistical distribution during the normal
behavior to be significantly different from the one during the intrusive behavior.
The more different those two distributions are, the better are the chances for
that feature to detect the intrusive behavior.

To study the statistical nature of a single distribution, we use The Chebyshev’s
Inequality, a well known formula named after the Russian mathematician L.P.
Chebyshev who first proved it. The formula mathematically proves that in any
probability distribution nearly all values are close to the mean value [16,6]. The
inequality is mathematically defined as:

P (|X − μ| ≥ mσ) ≤ 1
m2

, ∀m,m ⊂ R∗ (5)

where X is a random variable, with an expected μ value and a finite standard
deviation σ. The theorem states that the probability of a value X to be more
than mσ apart from the μ is less or equal than 1/m2. Despite its loose bounds
the theorem is very useful because it applies to any kind of distribution. Once the
μ and σ are known for a distribution, the m factor can simply be computed as:

m =
|X − μ|

σ
(6)

It is easily seen that when m → ∞, the P (|X − μ| ≥ mσ) → 0; meaning that
the farther the X point is from the current distribution the less probable it is
for that point to belong to the current distribution.

Let us define P (X |μ, σ) as the probability of a point X to be an outlier of a
distribution that has μ as mean and σ as standard deviation as follows:

P (X |μ, σ) =

{
1− P (|X − μ| ≥ mσ) if |X − μ| ≥ σ

0 otherwise
∀X (7)
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The formula has the same value (i.e., zero) for all the points that are within one
σ away from the μ. This is easily acceptable since the probability of a point to
belong to a certain distribution is very high if it is situated within one σ from the
μ (i.e., about 68.26% of the population lies within 1 standard deviation based
on the Empirical Rule and Central Limit Theorem [6]).

To evaluate the degree of effectiveness of a feature in detecting a certain in-
trusion, two important factors must be considered as follows: (a) the probability
of the normal points to be outliers of the attack data distribution, and (b) the
probability of the intrusive points to be outliers of the normal data distribution.
This two-way check is extremely important since it considers both normal and
intrusive distributions of the feature.

Let P (fi|ξj , τk) represent the probability of feature fi to detect intrusion ξj
given the τk tuning. Recall that for each fi, ξj , τk combination the μ(fi, τk) and
σ(fi, τk) of the normal behavior as well as μ(fi, ξj , τk) and σ(fi, ξj , τk) of the
intrusive one are available. Thus, the previous probability is defined as follows:

P (fi|ξj , τk) =

P (μ(fi, ξj , τk)|μ(fi, τk), σ(fi, τk)) + P (μ(fi, τk)|μ(fi, ξj , τk), σ(fi, ξj , τk))
2

(8)

where, P (μ(fi, ξj , τk)|μ(fi, τk), σ(fi, τk)) is the probability of intrusion’s mean
to be an outlier of the normal data distribution, and P (μ(fi, τk)|μ(fi, ξj , τk),
σ(fi, ξj , τk)) is the probability of normal behavior mean to be an outlier of
the intrusive data distribution. It is easily seen that P (fi|ξj , τk) ∈ [0, 1] and
P (fi|ξj , τk) ⊂ R. Moreover, the bigger this probability is, the higher dissimilar-
ity between the two distributions (i.e., normal and attack), and the better the
chances of detecting the intrusion ξj using the current feature fi and tuning τk.

Whenever a new P (fi|ξj , τk) probability is computed, it is sent to the 1-2 Tier
DB for temporary storage. Once all the possible combinations are exhausted the
next Tier is invoked for further processing.

5.2 Statistical Extractor 2nd Tier

The aim of second processing block is to reduce the effect of a particular τk tuning
from the probability formula that evaluates the chances of a feature to detect an
intrusion. As previously mentioned (see Sec. 3) for each of the studied features,
multiple tuning factors were employed. This step is not applicable in the case of
Basic Feature category since no tuning parameters are needed. However, for the
other two remaining cases (i.e., connection based features and time based features)
there are 180 tunings for each individual feature that give different probability
values. Consequently, it is important to acknowledge the performance of a feature
not only against one tuning value but a set of them. This will both make the
final probability more reliable, and show how resistant the feature is to different
tunings.
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Let P (fi|ξj) be the probability of feature fi to detect attack ξj , defined as
follows:

P (fi|ξj) =

∑
τk∈Si

P (fi|ξj , τk)
|Si|

(9)

where, Si is the set of considered tuning combinations for fi, and |Si| is the size
of that set (i.e., number of tunings in the set).

While the chosen tuning values cover a fair range of possible tuning combi-
nations, not all of them will facilitate a good detection of attacks. Furthermore,
some of them actually inhibit the features to detect certain attacks. Conse-
quently, forcing the set Si to include all the possible tuning combinations would
not be the best solution since features that perform mediocre in all tunings
might be advantaged over features that perform very well on only a reasonable
subset of tunings. The viceversa stands too; reporting the performance on only
one tuning parameter would probably advantage the features that are unstable
to tunings. Furthermore, the extremes best/worse tuning combination should
not be considered too, since they might mislead the final result and are not
statistically significant.

To solve this issue, we report the performance of the features over their best
50% tuning combinations excluding the best and worse cases. This will advantage
both, features that are stable to different tuning factors, as well as features that
do not perform well on a small subset of the tunings that we work with.

The 2nd Tier computes all the P (fi|ξj) probabilities and temporary stores
them into the 2-3 Tier DB. Once all the possible combinations are exhausted
the final Tier is invoked for further processing.

5.3 Statistical Extractor 3rd Tier

The third and final Tier reports the mean performance of the features based on
the defined attack categories.

Let P (fi|ζm) be the probability of feature fi to detect attacks that belong to
ζm category, defined as follows:

P (fi|ζm) =

∑
ξj∈ζm

P (fi|ξj)
|ζm|

, ζm = {DoS,Probe,U2R,R2L} (10)

where, |ζm| represents the number of attacks in that category.
This processing will advantage the features that not only accurately detect

the attacks from the given ζm category, but also the ones that detect the most
intrusions that exist in this category. Once the final processing step is done, the
features are sorted by their P (fi|ζm) and reported to the user.

6 Experimental Results

As proof of concept for our statistical evaluation method, we report our findings
on the DARPA Intrusion Detection and Evaluation Dataset created by MIT
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Lincoln Laboratory[2]. To our knowledge, this dataset is the only public (labeled)
dataset in the literature that suits our needs. The dataset has a fair amount of
normal and malicious data captured over a period of 5 weeks.

Based on the attack category proposed by MIT, there are 5 main types of
attacks in this dataset as follows: Denial of Service (DoS) attacks, Probing at-
tacks, Remote to Local (R2L) attacks, User to Root (U2R) attacks, and Data
attacks [7,3,8,9,2]. While the first four types represent different attack mecha-
nisms that an intruder might use to compromise a host, the final attack category
(i.e., Data) describes the goal of the attacker and thus no experimental results
are presented in this case. Furthermore, the U2R category is invisible to network
level features. This assertion is also confirmed by our experiments since none of
the features managed to identify any attack. Thus, no experimental results are
reported for this category too. Finally, the attacks contained in the R2L category
are application level attacks. These types of attacks are not directly visible from
the network level unless the payload of the packet is inspected. Consequently,
our experimental results are presented only for DoS and Probing attacks.

Most of the attacks that exist in the DARPA 99 dataset are in the last two
weeks of the dataset (i.e., Week 4 and Week 5). The traffic was captured using
two sniffers and stored into tcpdump files. One of the sniffer was placed inside
the network, while the second one was placed at its border. This allowed all
traffic inside the network as well as the one exchanged with the outside network
to be captured. Thus, there are two tcpdump files for each day except for the
second day of the forth week where no inside tcpdump file is provided. Therefore,
there are 19 tcpdump files that need to be analyzed for each feature tuning
combination. Moreover, as described in Sec. 3, there are 180 tuning combinations
for each of the time based features and connection based features categories.
Since the proposed feature extractor (see Sec. 4) can construct in parallel all the
network features that are analyzed, there were needed 180 processing steps over
each of the input tcpdump files. This lead to a total of 3420 feature extraction
jobs that needed to be completed for collecting the final results. These jobs were
handled by 30 processors of a Sun V60 supercomputer cluster that managed to
exhaust all of them within approximately one month of constant running.

Our experimental results statistically illustrate that our feature evaluation
criteria can successfully be applied to analyze the importance of features on the
detection process. We statistically show that some of the network features are
more suitable than others in the detection process. Moreover, features that tend
to detect a particular type of attack may not be useful at all in the detection
of other types. Furthermore, the higher the attack is in the TCP/IP architec-
ture model, the smaller is the chance of detecting that attack by monitoring the
features extracted at the Transport, Network and Network Access layers. For in-
stance, in general, the computed P (fi|ζm) probability for DoS and Probe attacks
is higher than R2L attacks, while in the case of U2R attacks this probability is
close to zero.

In our analysis we use ‘Current Connection’ label in the context of a feature
whenever that feature is defined based on the connection that the currently
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sniffed packet belongs to. Next, ‘SrcIP and DstIP Hosts’ label is used whenever
a feature refers to all the existing connections between the two IPs that are
found in the currently sniffed packet. Thus, the ‘SrcIP’ and ‘DstIP’ refer to
the source and target IPs of the connection that the currently sniffed packed
belongs to. The label ‘SrcIP Host’ is used if the current feature analyzes all
the connections that exist in the network and have as source or target IP the
SrcIP Host. Similarly, the ‘DstIP Host’ label is used when the current features
monitors all the connections that exist in the network and have as source or
target IP the DstIP Host. Finally, the label ‘The Network’ is used whenever the
current feature is used to describe the wealth of network in general.

Most suitable features for the detection of DoS attacks monitor either all the
connections created between two hosts (i.e., ‘SrcIP and DstIP Hosts’), one host
and the network (i.e., ‘SrcIP Host’, and ‘DstIP Host’), and the network itself
(i.e., ‘The Network’). Furthermore, it seems that the features extracted from
ICMP protocol are quite good in detecting DoS and Distributed DoS attacks
that uses this protocol(see Table 1). As expected, in the case of Probing attacks,
most of the features target connections that were closed by reset, connections
that are in a partially open phase (e.g., the 3-way handshaking is incomplete),
ICMP packets that report destination unreachable, or echo reply requests to
name some. For detecting vertical scanning attacks most suitable features refer
to all connections established between two hosts (i.e., ‘SrcIP and DstIP hosts’),
whereas for detecting the horizontal ones the most suitable features are those de-
picting the interaction between a host and the rest of the network (see Table 2).

It is known that different networks may have different optimal tunings for the
same feature. Thus, finding and reasoning about the best tuning combination
that may be used in a certain network is out of the scope of this current work.
However, for future work, this type of study could be done if data is considered
from a pool of several different networks, and the reasoning about the best tuning
combinations is done relatively to the properties of each individual network (e.g.,
the connection window size may depend on the average number of connections
that exist in the network).

We summarize our findings in Tables 3, 4, 5, showing the overall percentage
of features and their average effectiveness (i.e., P (fi|ζm)) in detecting the main
types of attacks. The summary is reported based on the domain abstraction
that the features apply to (i.e., ‘Current Connection’, ‘SrcIP and DstIP Hosts’,
‘SrcIP Host’, ‘DstIP Host’, and ‘The Network’).

Due to the diversity of the data and the infinite amount of features that could
be extracted from it, the authors recognize that our summary is dependent not
only on the selected features, but also on the selected dataset. However, we argue
that the set of features that are analyzed cover a fair range of possible combi-
nations and that the experimental results represent just a proof of concept of
our evaluation technique. Table 3 presents a general view over all the consid-
ered features regardless of their underlying implementation. As seen, for DoS
attack, the features extracted from ‘SrcIP and DstIP Hosts’ information repre-
sent 37% of all the features that detect this category; however, despite the small
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Table 1. The top features for the DoS detection sorted by their performance

No P (fi|ζm) Impl.
Type

Abstraction Description

1 0.856 Conn. SrcIP Host number of ICMP bytes sent by SrcIP
2 0.853 Conn. SrcIP Host number of ICMP packets sent by SrcIP
3 0.832 Conn. Current

Connection
number of ICMP bytes sent by SrcIP to DstIP

4 0.832 Conn. Current
Connection

number of ICMP bytes exchanged

5 0.832 Conn. SrcIP and
DstIP Hosts

number of ICMP bytes sent by SrcIP to DstIP through multiple
connections between the two hosts

6 0.829 Conn. SrcIP and
DstIP Hosts

number of ICMP packets sent by SrcIP to DstIP through mul-
tiple connections between the two hosts

7 0.828 Conn. Current
Connection

number of ICMP packets sent by SrcIP to DstIP

8 0.828 Conn. Current
Connection

number of ICMP packets exchanged

9 0.759 Conn. DstIP Host number of ICMP bytes received
10 0.721 Time SrcIP and

DstIP Hosts
number of TCP packets sent by SrcIP to DstIP with synchro-
nize flag

11 0.711 Time DstIP Host number of TCP connections created by any host using any port
to connect to DstIP on any port but CSrcPort

12 0.711 Time DstIP Host number of TCP connections that use DstIP
13 0.690 Conn. The Network number of ICMP packets
14 0.686 Time SrcIP and

DstIP Hosts
number of TCP packets received by SrcIP from DstIP with
synchronize flag

15 0.671 Time SrcIP and
DstIP Hosts

number of TCP connections created by SrcIP using any port
to connect to DstIP on any port

16 0.665 Time SrcIP and
DstIP Hosts

number of TCP connections between SrcIP and DstIP

17 0.665 Time DstIP Host number of TCP packets sent by DstIP with synchronize flag
18 0.659 Time DstIP Host number of TCP packets received by DstIP with synchronize

flag
19 0.642 Conn. DstIP Host number of ICMP packets received by DstIP
20 0.611 Time SrcIP Host number of TCP packets sent by SrcIP with synchronize flag
21 0.592 Conn. DstIP Host average number of UDP bytes per packet received by DstIP
22 0.588 Conn. SrcIP and

DstIP Hosts
number of TCP connections created by SrcIP using any port
to connect to DstIP on any port but CDstPort

23 0.555 Time SrcIP Host number of TCP connections created by SrcIP using any port
to connect to any other host on any port

24 0.555 Time SrcIP Host number of TCP connections created by SrcIP
25 0.555 Time SrcIP and

DstIP Hosts
number of TCP connections created by SrcIP using any port
to connect to DstIP on any port but CDstPort

26 0.523 Conn. SrcIP and
DstIP Hosts

number of TCP packets sent by SrcIP to DstIP with synchro-
nize flag

27 0.503 Conn. SrcIP and
DstIP Hosts

number of TCP connections between SrcIP and DstIP

28 0.481 Conn. SrcIP and
DstIP Hosts

average number of TCP bytes per packet sent by SrcIP to
DstIP

29 0.476 Conn. SrcIP Host average number of TCP bytes per packet sent by SrcIP
30 0.470 Time DstIP Host number of TCP connections created by any host using any port

to connect to DstIP on the CDstPort

number (i.e., 13%) the most effective features are the ones that characterize the
‘Current Connection’ (i.e, P (fi|DOS) = 0.830). This is mainly due to the single
and multiple connection DoS attacks that generally exhibit a strong behavior at
the network level. Furthermore, in the case of Probing attacks, the best solution
is to monitor the behavior of each individual host. It is not surprising that the
features defined on ‘SrcIP Host’ constitute the 47% of all the listed features
while also being the most effective ones (i.e.,P (fi|Probe) = 0.505).
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Table 2. The top features for the Probing detection sorted by their performance

No P (fi|ζm) Impl.
Type

Abstraction Description

1 0.762 Conn. SrcIP Host number of TCP connections created by SrcIP which were closed
with RST Flag

2 0.755 Time SrcIP Host number of ICMP echo reply packets sent by SrcIP
3 0.742 Conn. SrcIP Host number of TCP packets received by SrcIP with RST flag
4 0.618 Conn. SrcIP and

DstIP Hosts
number of TCP connections created by SrcIP using any port
to connect to DstIP on any port but CDstPort

5 0.583 Time SrcIP Host number of TCP connections that use SrcIP which were closed
with RST Flag

6 0.582 Time SrcIP Host number of TCP packets received by SrcIP with RST flag
7 0.565 Conn. DstIP Host number of TCP packets sent by DstIP with RST flag
8 0.535 Time SrcIP and

DstIP Hosts
number of TCP packets received by SrcIP from DstIP with
RST flag

9 0.496 Conn. SrcIP Host number of ICMP connections created by SrcIP
10 0.491 Time SrcIP Host number of ICMP connections created by SrcIP
11 0.484 Time The Network the percent of TCP connections that were reset against all

existing connections
12 0.456 Conn. DstIP Host number of TCP connections created by any host using any port

to connect to DstIP on any port but CDstPort
13 0.445 Time SrcIP Host average number of ICMP bytes per packet received by SrcIP
14 0.441 Conn. DstIP Host number of TCP connections created by DstIP which were

closed with RST Flag
15 0.439 Conn. The Network number of ICMP connections that have at least one echo reply

message
16 0.420 Time SrcIP Host number of ICMP packets received by SrcIP
17 0.414 Conn. SrcIP and

DstIP Hosts
number of TCP packets sent by SrcIP to DstIP with reset flag

18 0.411 Time The Network number of UDP connections that exist in the network and use
different ports than the CDstPort

19 0.409 Conn. The Network number of TCP connections the did not finish yet the 3-way
handshake

20 0.376 Time SrcIP Host number of ICMP bytes received by SrcIP
21 0.371 Conn. DstIP Host average number of ICMP bytes per second received by DstIP
22 0.359 Time SrcIP Host number of UDP connections created by HostY using any port

to connect to any port but CDstPort on any other hosts
23 0.353 Conn. SrcIP Host number of TCP packets sent by SrcIP with RST flag
24 0.353 Conn. SrcIP Host number of TCP connections created by SrcIP using any port

to connect to any other host on any port but CDstPort
25 0.350 Conn. Current

Connection
number of ICMP destination unreachable packets received by
SrcIP from DstIP in the current connection

26 0.350 Conn. SrcIP and
DstIP Hosts

number of ICMP destination unreachable packets received by
SrcIP from DstIP considering multiple connections

27 0.350 Conn. SrcIP Host number of ICMP destination unreachable packets received by
SrcIP

28 0.347 Conn. DstIP Host number of TCP connections received by DstIP that do not
start with SYN Flag

29 0.338 Conn. The Network number of TCP connections that connect to CDstPort on var-
ious hosts in the network, and did not finish the 3-way hand-
shake

30 0.336 Time SrcIP and
DstIP Hosts

number of TCP connections created by SrcIP using any port
to connect to DstIP on any port but CDstPort

Tables 4 and 5 present the same type of information, but separated by the
type of implementation used to construct the features. Consequently, Table 4
further presents statistics regarding the Connection based features, while Table
5 presents the same statistics based on the Time based features. As a general re-
mark, the Connection based features tend to be more effective in attack detection
than the Time based features. This is especially observable in the case of ‘Current
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Table 3. Summary of all the studied features regardless of their implementation

Abstraction DoS Probing

% P (fi|DoS) % P (fi|Probe)
Current Connection 13% 0.830 3% 0.350

SrcIP and DstIP Hosts 37% 0.641 17% 0.451
SrcIP Host 20% 0.651 47% 0.505
DstIP Host 27% 0.651 17% 0.436

The Network 3% 0.690 17% 0.416

Table 4. Summary of all the studied Connection based features

Abstraction DoS Probing

% P (fi|DoS) % P (fi|Probe)
Current Connection 24% 0.830 6% 0.350

SrcIP and DstIP Hosts 35% 0.626 17% 0.461
SrcIP Host 18% 0.729 33% 0.509
DstIP Host 18% 0.665 28% 0.436

The Network 6% 0.690 17% 0.395

Table 5. Summary of all the studied Time based features

Abstraction DoS Probing

% P (fi|DoS) % P (fi|Probe)
Current Connection 0% 0.000 0% 0.000

SrcIP and DstIP Hosts 38% 0.660 17% 0.435
SrcIP Host 23% 0.574 67% 0.501
DstIP Host 38% 0.643 0% 0.000

The Network 0% 0.000 17% 0.448

Connection’ features for detecting the DoS attacks. In this case, the same set
of features manage to outperform all the other ones when implemented using a
connection interval (i.e., P (fi|DOS) = 0.830 in Table 4), whereas, they perform
badly when implemented in a time interval (i.e, P (fi|DOS) = 0.000 in Table 5).
Further comparison of the two tables (i.e., Tables 4 and 5), shows that almost all
the mean probabilities computed for the Connection Based features are higher
than the ones computed for the Time Based features. Overall, our experimental
results illustrate what has always been reported and believed by the research
community in the past; however, the novelty of this work is that it proposes
a ranking mechanism to evaluate the effectiveness of features against different
types of attacks, and that it provides a set of most recommended features to be
used for the improvement of detection.

7 Conclusion and Future Work

The feature selection phase is one of the critical tasks that the designers of
an IDS / IPS must perform. This phase will later on directly influence the
detection performance of the system. The diversity of network features makes
almost impossible for a system to create and use all of them. Moreover, there
might be features that are insensitive to the attack data, and once feed into the
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detection engine might drop the quality of detection. Thus, being able to choose
a set of good features for intrusion detection is of great importance.

The aim of this paper is to both provide a statistical technique for studying
the importance of a feature in the detection of attacks, as well as to extract a
set of recommended features for each of the main types of intrusion attacks (See
Appendix 1 and 2 for detail feature listing). We study a set of 673 features that
are extracted from the IP, ICMP, TCP and UDP protocols. We restricted our
study to those protocols since they are among the most used ones in the Internet.
However, our proposed technique can be successfully applied to other applica-
tion level protocols. For each of the studied features we experimented multiple
tuning combinations (i.e., 180) that allowed the final ranking to also consider
the sensitivity to different tuning values of the selected features. Therefore, due
to the number of features and tunings, as well as the size of the input dataset,
we believe that the final results are fairly comprehensive for the protocols that
we target.

Our future work will consider other datasets than the one used in this study.
However, given the requirements of such dataset (i.e., labels, size, attack diver-
sity, normal traffic) the chances of finding one remain slim (not only for us, but
also for the research community). We are also interested in detecting possible
interrelations between different features or feature groups in the detection pro-
cess. Thus, we plan on incorporating this information into our feature evaluation
procedure. Another interesting study would be to highlight those features that
are not so sensitive to different tunings. Such features would more successfully
be used in the detection of attacks since the chances of setting an optimal or
near optimal tuning in a given network are slim, the whole process being a trial
and error one. Finally, a study will be made on different feature tunings that
will aim to propose the most suitable tuning combinations that could be used
in the attack detection process.
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Abstract. Intrusion detection systems (IDSs) can detect and respond to various 
attacks. However, they cannot detect all attacks, and they are not capable of 
predicting future attacks. In this research, we propose an automatic intrusion 
prediction system (IPS) called E-NIPS (Event-based Network Intrusion 
Prediction System) that can not only detect attacks but also predict future 
probable attacks. We have utilized network penetration scenarios partitioned 
into multiple phases depending on the sequences they follow during network 
penetrations. Each of these phases consists of attack classes that are precursors 
to attack classes of the next phase. An attack class is a set of attacks that have 
same the objectives, categorized to generalize network penetration scenarios 
and to reduce the burden on the prediction engine during intrusion alerts 
correlation and prediction tasks. Future attacks are predicted based on the attack 
classes detected in an earlier phase of a penetration scenario. Automatic 
intrusion prediction provides little but very crucial time required for fortifying 
networks against attacks, warns network administrators about possible attacks, 
and reduces the damage caused due to attacks. In this paper, we describe the 
architecture, operation, and implementation of E-NIPS. The prototype 
implementation is evaluated based on some of the most commonly occurring 
network penetration scenarios. The experimental results show that the prototype 
automatically provides useful information about the occurrence of future attack 
events. 

Keywords: Intrusion detection and prediction, attack classes, network security. 

1   Introduction 

Attacks on computer systems have continued unabated with more sophistication and 
variants. Some of the attacks are very stealth and harder to detect, and sometimes 
even when an attack is detected, there is very little time to respond and defend the 
target system. IDSs are systems that can detect attacks on computer systems and 
respond to such attacks [1]. However, IDSs cannot sense and respond to the attacks 
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that might probably occur in future. A system that can not only detect attacks but also 
sense and predict future attacks is called an intrusion prediction system (IPS). IPSs 
can be more beneficial than IDSs in taking effective measures to secure computer 
systems by warning security administrators about future attacks. IPSs can be 
classified into time and event-based intrusion prediction systems [10]. Time-based 
IPSs predict the seasonality, trends, and cyclic patterns of attacks from historical audit 
data. Event-based IPSs make prediction based on the event sequences found in multi-
step attacks or observed during network penetrations. In this paper, we present an 
Event-based Network Intrusion Prediction System (E-NIPS) which utilizes the attack 
sequences occurring in network penetrations to predict future attacks. 

Network penetration refers to all the activities that an attacker performs from 
outside the network to attack a target inside the network [11]. These activities are a 
set of attacks carried out in a sequence until the objective of the attacker is met. 
Network penetration scenarios are partitioned into multiple phases depending on the 
sequence they occur during a network penetration. Each phase is made up of a set of 
attack classes that could occur in that phase. An attack class is a set of attacks that are 
variants of the same attack, having a common objective and a set of attributes called 
attribute vector associated with it for monitoring the likelihood of the occurrence of 
that attack class in future. For example, an FTP overflow attack class consists of all 
varieties of FTP overflow exploit attacks that an attack event detection component of 
the IPS can detect. The attribute vector that can be associated with this attack class 
consists of the following information: number of connection to the FTP server, 
version number, number of login failures, anonymous connections, etc. The 
generalization of a group of attack alerts into an attack class for correlation reduces 
the computational burden on the prediction engine during the construction of network 
penetration scenarios. Intrusion prediction is made based on all the precursors to the 
future attack classes observed in the network penetration scenarios after the attack 
class correlation. 

The proposed E-NIPS architecture contains the databases that store current and 
past attack events, software and hardware configuration information, and the new 
attacks reported external to the network. The intrusion prediction engine of the 
proposed IPS uses the information stored in these databases to perform intrusion 
prediction. The prediction engine groups and maps attack events to attack classes, 
generates network penetration scenarios from the correlation of attack classes, 
calculates the probability of occurrence of future attack classes belonging to the next 
phase of a network penetration, and also estimates the extent of penetration. The 
prediction engine is built on the predefined rules that contain the information about 
the sets of attack classes along with the probability with which they can follow a 
particular attack class. After future attack classes are predicted, the elements of 
attribute vectors associated with them are monitored to detect the most likely attacks 
to follow. 

IPSs foresee future attacks and hence provide the crucial time required for 
fortifying the network against any attack. In this paper, we present the concepts 
behind intrusion prediction, the architecture of the IPS, and the implementation details 
of the prototype IPS. The prototype is evaluated using the most commonly occurring 
network penetration scenarios. Experimental results show that the prototype 
automatically provides useful information about the occurrence of future attacks. 
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Paper Organization. Some of the related works are discussed in Section 2. Section 3 
elaborates the phases of a network penetration and discusses the heuristics used in this 
work. Section 4 presents the architecture of E-NIPS by describing its components. 
Section 5 describes the implementation details of the prediction engine component of 
E-NIPS. Section 6 provides the experimental evaluation results of the prototype IPS. 
Section 7 summarizes the current work and its limitations and outlines the future 
work. 

2   Related Work 

Mathematical forecasting techniques are used for various applications like weather 
and business forecasting. In [2], various forecasting techniques that can be applied for 
business applications such as profit/loss prediction is discussed. In [9], fuzzy logic is 
applied for weather forecasting. In [3, 4, 5, 6, 7, 8], various forecasting techniques 
such as decision tree, Hotelling’s T2 test, chi-square multivariate test, markov chain, 
exponentially weighted moving average, neural networks, software agents, and local 
linear models have been used for intrusion detection. These techniques predict next 
user/system behavior based on the available information learnt by the forecasting 
algorithms during training phase. Any deviation from the behavior predicted by the 
forecasting algorithms is considered as abnormal, and an alert is generated to inform 
about the attack. However, the prediction of future intrusive events has not been dealt 
so far in the works mentioned above.  

In [12], the predictive patterns that are rules generated inductively from the event 
sequences present in audit data are used for intrusion detection. Suppose P1 and P2 
are events that have already occurred, F1 and F2 are events that might occur with 
some probability x and y, then the rule {P1-P2  (F1=x%, F2=y%)} is used. The 
rules represent normal user behavior and any deviation from the normal user behavior 
is detected by the rules as an attack. Therefore, it is basically an anomaly-based 
intrusion detection system [1]. The rules used in our work contain information of 
attack event sequences observed in network penetration scenarios instead of patterns 
seen in audit data. Furthermore, the rules in our work are used for the correlation of 
detected attack classes to construct ongoing network penetration scenarios, and the 
scenarios are also utilized for future attack events prediction instead of the mere task 
of detection [12].  

In [13,14,15,16,17], a graph-based approach is used to relate various attack events 
or alerts from an IDS with vulnerability and network topology information to 
construct a multi-stage attack scenario for recognizing attacker intensions. The nature 
of work presented in [15, 16, 17] are more closely related to our work, and hence, 
they are discussed in the following paragraphs.  

In [15], a work on alert correlation and multi-stage attack scenario construction is 
proposed. The cluster of alerts that correspond to the same occurrence of an attack are 
merged into one alert to reduce the number of alerts that are sent to a security 
administrator and for the ease of alert correlation. During correlation, attack alerts that 
are related to a multi-stage attack scenario are correlated using rules to generate a 
complete attack scenario. In our work, we have classified the alerts that are variants of 
the same attack as an attack class and the classification is also based on the unique 
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attributes associated with the alerts. This classification of attacks simplifies the 
domain knowledge about the relationship/dependency between different attacks. The 
classification process involves merging alerts as discussed in [14] with an additional 
step of mapping to an attack class. However, attribute vectors and some heuristics 
used in our work help in making finer-grained prediction of attacks from the predicted 
attack classes. The use of network penetration scenarios in our work makes it more 
useful tool for penetration testing and risk assessment.  

In [16], a technique for alert correlation and future alert prediction is proposed. 
Alerts from individual attack steps are correlated to detect multi-step attacks. For the 
purpose of alert correlation and prediction, attack graphs are built based on 
interdependencies between attack exploits and security conditions that are required 
for the corresponding exploit to be executed. Prediction is made based on the new 
security conditions that would be satisfied from any newly generated alerts. In our 
work, we have considered network penetration scenario graphs that show all the 
possible attack classes that follow its precursors. The number of attack classes used in 
our work during attack class correlation is considerably lower than the number of 
alerts used in [16] during alert correlation. As a result, attack class correlation is 
easier to perform. The simplicity of a network penetration scenario graph resulting 
from attack classes permits the usage of simple predefined rules for network 
penetration scenario construction and prediction. In our work, by utilizing penetration 
scenarios partitioned into phases, we can also determine the extent of a network 
penetration.  

In [17], an automatic attack graph construction mechanism and an alert correlation 
technique using multi-layer perceptron (MLP) and support vector machines (SVM) 
are presented. The alerts having similar features such as same source and destination 
addresses are used to compute the correlation probability between alerts. The 
correlated alerts are then represented as a hyper-alert graph to detect a multi-stage 
attack. The generated graph combined with vulnerability and topology information is 
used for target recognition and risk assessment. In our work, attack classes instead of 
each of the alerts belonging to the different phases of a network penetration are 
correlated based on predefined rules, and the conditional probabilities of future 
attacks are predicted. A set of attribute vectors indicates the security conditions 
related to the predicted attack classes that have to be monitored.  

3   Network Penetration  

In this section, we describe the network penetration phases using an example 
penetration scenario and discuss some of the heuristics used for prediction. 

3.1   Network Penetration Phases 

In this research, we have considered network penetration scenarios [11] that constitute 
the attacks that an attacker employs to find the way from outside to the target host 
present inside the network. Some of the important phases of a network penetration 
and the attacks possible in those phases are discussed below.  
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Reconnaissance (recon). This is the first phase in a network penetration where an 
attacker tries to gather information such as network topology, open ports, shared 
folders, user accounts, and software/hardware configuration information. DNS zone 
transfer, NSLookup, port/network scanning, operating system and web fingerprinting, 
and vulnerability scan are some the attacks used by an attacker in this phase. 

Exploitation. This phase consists of attacks against the target that exploit the 
information already gathered in the reconnaissance phase to perform attacks such as 
buffer overflow, unauthorized access, file manipulation, etc.  

Denial of Service (DoS). DoS attacks are the class of attacks that follow after a recon 
or an exploitation phase. DoS attacks cause disruptions in the services available to 
users, and hence, these attacks have to be detected as early as possible. 

                     

Fig. 1. An example network penetration scenario 

Malicious Code. In this phase, attacks such as uploading of distributed DoS agents, 
Trojan, rootkits, backdoors, virus, or worms could take place.  

For intrusion prediction, we identify attack classes within each phases discussed 
above based on the common objective that attack events are trying to attain. For 
example [18], all FTP overflow exploits like FTP CMD overflow attempt, FTP PASS 
overflow attempt, FTP USER overflow attempt, etc. are considered as one class 
named FTP overflow, and this attack class falls under the exploitation phase of a 
network penetration. Section 5.1 contains detailed information on attack 
classification. 

An example network penetration scenario is shown in Fig. 1. In this figure, we can 
see recon attack classes (DNS zone transfer and NSLookup) at time t0 and (Portscan 
and Vulnerability scan) at time t1, denial of service (DoS) and exploitation attack 
classes (FTP overflow and HTTP overflow) at time t2, malicious code attack class 
(Trojan) at time t3, and the final objective of the attacker (Server crash and Data theft) 
at time t4. The arrows in Fig. 1 indicate the causal relationships between attacks. 
Based on the attacks that have occurred at time t0 and t1, we can predict attacks 
possibly occurring at time t2. Similarly, based on the attacks detected at time t0, t1, 
and t2, we can predict attacks that might occur at time t3 and t4. 
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3.2   Heuristics for Intrusion Prediction 

Several heuristics are used in deciding about the attack class which has the higher 
probability of occurring in near future [11, 13]. Some of the heuristics used in this 
work are mentioned below: 

1) Port scanning is considered precursor to DoS and exploitation attacks. 
2) Vulnerability scanning is considered precursor to attacks on vulnerable software 

and hardware. 
3) Vulnerable software/hardware versions are more prone to attacks. For example, 

exploits on some of the versions of wu-ftp server/ISS web server already exist 
and can be easily used against these servers.  

4) If any software is recently reported to be vulnerable, then the chances of attacks 
on this software are higher. 

5) Recon activities against specific servers lead to attacks specific to that server. For 
example, FTP server related recon activities lead to FTP server related attacks like 
FTP overflow exploits. Similarly, recon activities on a particular system/operating 
system lead to attacks on that particular system/operating system. 

6) A newly reported worm/virus that has infected an external network has higher 
probability of attacking the network. 

Along with the general heuristics listed above other attack specific precursors are 
used to decide about the probability of a particular attack class occurring in future. For 
example, suspicious logins or login failures can lead to user account compromise and 
act as a precursor to attacks such as uploading of rootkits and system file corruption. 

4   E-NIPS Architecture  

Fig. 2 shows the architecture of E-NIPS. The main components are Host Activity 
Collector and Reporter (HACR), Network Activity Collector and Reporter (NACR), 
Internal Activity Database (IAD), Vulnerability Profile Database (VPD), External 
Activity Database (EAD), and Intrusion Prediction Engine (IPE). Software/hardware 
configuration and web postings/mailing lists components shown in dotted boxes indicate 
the information stored in the VPD and the EAD respectively. The HACR and NACR are 
attack events monitoring components and the IAD, the VPD, and the EAD are the storage 
components that store attack events, software/hardware configuration, and web postings/ 
mailing lists respectively. The IPE is the principal intrusion prediction component. 

Host Activity Collector and Reporter (HACR). It is a probe placed on every host (1 
to n) within the network. It is used for monitoring the host for attack events such as 
system files corruption, presence of sniffers and vulnerable applications, and 
installation of rootkits/backdoors on the host. The HACRs send any detected attack 
event to the IAD component for storage. 

Network Activity Collector and Reporter (NACR). It is also a probe that can 
monitor network traffic for malicious attack events such as port/network scanning, 
DoS attacks, virus or any overflow exploit content in network traffic, communication 
between Trojan client and server, and suspicious logins. The NACR monitors traffic 
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to servers such as ftp, http, rpc, snmp, smtp, and pop. It also sends any detected attack 
event to the IAD component for storage. The attack events detected in the network by 
the NACR and the attack events detected by the HACRs on every host within the 
network result in multipoint detection and provide more comprehensive attack 
detection capability to the IPS. Snort is a widely used open source network intrusion 
detection tool [18] that has been used as the suspicious network activity detector by 
the NACR of E-NIPS. Snort is a rule-based intrusion detection system that contains 
more than 1,500 attack signatures for matching against sniffed network traffic to 
detect any malicious content in the traffic. Snort generates an alert on the detection of 
any attack traffic in the network.  

       

Fig. 2. E-NIPS architecture 

Internal Activity Database (IAD). This database stores all the attack events detected 
in the hosts and the network by the HACRs and the NACR monitoring components. 
This database contains attack events that have occurred in the past to be used by the 
IPE to construct network penetration scenarios and predict future attacks. 

Vulnerability Profile Database (VPD). This database stores hardware and software 
configuration information of the internal network environment. The VPD is necessary 
to apply the heuristics discussed in Section 3.2 and is populated with data from 
vulnerability scanner tools. The VPD also stores the information of open ports, 
available services, and operating systems of every monitored host. 

External Activity Database (EAD). This database stores the data related to the 
newly reported attacks collected from external sources like web posting and mailing 
lists. The EAD data is utilized to defend against those attacks. 

Intrusion Prediction Engine (IPE). The IPE is the main prediction component of  
E-NIPS, and it is discussed elaborately in the next section.  
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5   Intrusion Prediction Engine 

The IPE predicts intrusions based on the events stored in the IAD and the data stored 
in the VPD and the EAD. The IPE consists of a classifier and a predictor module. The 
classifier maps detected attack event alerts to attack classes and sends the mapped list 
of attack classes to the IPE. The predictor module generates network penetration 
scenarios by correlating attack classes received by the classifier and determines the 
probability of occurrence of attack classes of future penetration phases. It also 
estimates the extent of a penetration. The two most important functional modules of 
the IPE are discussed in the following subsections. 

5.1   Classifier 

The function of the classifier module is to take the set of attack events from the IAD 
and determine the attack classes of those events. The successive occurrences of attack 
events belonging to the same attack class is considered as single occurrence to reduce 
the number of attack classes sent to the predictor module. The output from the 
classifier is a set of attack classes that are arranged according to the sequence they 
have occurred and found in the IAD. 

The number of attack events detected by the NACR and the HACRs and the 
number of potential penetration scenarios considering all the attack events present in 
the IAD are very high. As a result, it is difficult to manually generate the rules for 
prediction in the IPE. Therefore, we have grouped a set of attack events into attack 
classes based on the attack objective and commonality between those attack events. In 
Fig. 3, we can see different attack classes used by E-NIPS and the sequence they 
could occur during a network penetration. Fig. 3 shows four separate columns with 
each column representing different phases of a network penetration with possible 
attacks in the corresponding phase. For example, all the FTP server related attack 
events are grouped into four attack classes: FTP overflow attempts, specific version, 
suspicious login, and DoS attempts as shown in the second column under FTP attacks. 
All different kinds of FTP overflow exploit attack events detected by the HACRs and 
the NACR are classified as “FTP overflow” attack class. The attacks against only 
specific versions of FTP servers (wu-ftp, serv-u) are grouped under a separate attack 
class, and similarly, all kinds of suspicious login attempts (brute force login attempts, 
anonymous/guest user login) are grouped as a separate attack class.  

The first column of Fig. 3 shows attack classes belonging to initial recon phase of a 
network penetration. Port scanning, network topology detection, and specific server 
recon activities occur in this phase. The recon phase is followed by attacks against 
specific servers such as DNS, FTP, RPC, and HTTP. The attack classes belonging to 
different servers are shown in the second column. In the third column, different attack 
classes (Backdoors/DDoS, DoS, and Web application attacks) that could follow attack 
classes of the second column are shown. The final column of Fig. 3 shows the attack 
classes that could be considered as final attack objective of the attacker. Data theft or 
alteration, system malfunctions, denial of service, web pages alteration, configuration 
change, and account compromise are some of the attack classes that are possible in 
the final phase of a network penetration. 
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Fig. 3. Attack classes and their sequences during a network penetration as used by the IPE 

5.2   Predictor 

The predictor correlates the set of attack classes received from the classifier module to 
construct network penetration scenarios for the purpose of prediction. The predictor 
module consists of predefined rules to predict future attacks based on the attack 
classes received from the classifier. Each rule stores information about the set of 
attack classes and the conditional probability with which they can follow a particular 
attack class. The rules also identify the attack with the highest probability of 
occurrence using some of the heuristics discussed in Section 3.2. After a set of attack 
classes are predicted by the rules, the attribute vectors associated with the predicted 
attack classes are monitored to identify the most likely attack to follow. For example, 
after occurrence of attack class A1, in Fig. 4, the elements of the attribute vectors of 
B1, B2, B3, B4, and B5 are monitored by the HACR and the NACR. If an activity is 
detected in the elements associated with attribute vector of attack class B1, then the 
probability of B1 occurring increases. Finally, the predictor also determines the extent 
of a network penetration to indicate the attack initiation, attack progress, or attack 
objective stage of a penetration. The attack classes detected in the recon phase 
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indicate attack initiation stage and the attack classes that lead to system compromises 
like those shown in the second and the third column of Fig. 3 indicate attack progress 
stage. The attack classes that indicate attack objectives as shown in the fourth column 
fall into the attack objective stage of a network penetration. 

                           

Fig. 4. A penetration scenario used by the IPE 

Fig. 4 shows one of the penetration scenarios taken from Fig. 3 that can be 
visualized as a graph with each attack class as a separate node and the arrows 
indicating the causal relationships between attack classes. In Fig. 4, we can see a FTP 
recon activity (A1) is a precursor to FTP server related attack classes (B1, B2, B3, B4, 
B5) which in turn leads to backdoor /virus/DDoS (C1, C2, C3) and FTP DoS (D1) 
attack classes. In this scenario, we consider B1, B2, B3, B4, and B5 are mutually 
exclusive and they follow attack class A1 with equal probability. Therefore, the 
probability of B1 occurring after A1 denoted as P(B1) is equal to 1/5, and similarly, 
P(B2), P(B3), P(B4), and P(B5) are all equal to 1/5. C1, C2, and C3 can follow 
events B1, B2, B3, and B4 with equal probability. Therefore, the conditional 
probabilities of attack class C1 following B1, B2, B3, and B4 are shown by Equation 1. 

P(C1/B1) =P(C1/B2) =P(C1/B3) =P(C1/B4) =1/3 (1) 

The conditional probabilities such as P(C2/B1) and P(C3/B1) can also be 
calculated similarly. D1 alone follows B5 and hence P(D1/B5) equals 1. Equation 2 is 
used to calculate the probability of occurrence of attack class C1 starting from A1. 
Similarly, probabilities P(C2) and P(C3) are also calculated.  

P(C1) =P(C1/B1)P(B1)+P(C1/B2)P(B2)+ P(C1/B3)P(B3) + P(C1/B4)P(B4) (2) 

In many cases, subjective probabilities could be used based on the data from the 
VPD, the EPD, and the heuristics discussed in Section 3.2. The set of future attack 
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classes that follow an attack class from an earlier phase along with their probabilities 
are programmed into the IPE using a set of rules of the form shown in Fig. 5. These 
rules are derived from the scenario shown in Fig. 4.  

Rule 1: A1  B1, B2, B3, B4, B5 (x1) 
Rule 2: B1|B2|B3|B4  C1, C2, C3 (x2) 

Rule 3: B5  D1 (x3) 

Fig. 5. Sample rules used in the IPE 

Rule 1 of Fig. 5 shows that if attack class A1 has occurred then B1, B2, B3, B4 or 
B5 could occur with probability x1. The value of x1 programmed in Rule 1 is 1/5 if 
B1, B2, B3, B4 and B5 are considered to occur with equal probability or a value based 
on subjective probability could be assigned to x1. Rule 2 shows that if B1, B2, B3, or 
B4 occur then C1, C2, or C3 could follow with probability x2. The value of x2 
programmed in Rule 2 is 1/3 if C1, C2, and C3 are considered to occur with equal 
probability or a value based on subjective probability could be assigned to x2. 
Similarly, Rule 3 of Fig. 5 shows that when B5 occurs then D1 is the most likely 
event to occur, and hence, x3 is 1 or based on subjective probability.  

Applying the types of rules shown in Fig. 5, the probability calculator generates 
penetration scenarios from the attack class list received from the classifier module. 
Suppose (A1, B1) is the attack class list received from the classifier module. Using Rule 
1 and Rule 2 of Fig. 5 the penetration scenario Scenario-A of Fig. 6 is generated. The 
probability value x4 in Scenario-A of Fig. 6 is calculated using Equation 2 considering 
the occurrence of both A1 and B1. If there exists an additional rule such as Rule 4: C1  
D1, D2, D3(x5) and (A1, B1, C1) class list is received from the classifier module then 
using Rule 1, Rule 2, and Rule 4 Scenario-B of Fig. 6 would be generated. The 
probability of occurrence of A1, B1, and C1 is considered in calculating x6 of Scenario-B. 

Scenario-A: A1 B1  C1, C2, C3 (x4) 
Scenario-B: A1 B1  C1  D1, D2, D3 (x6) 

Fig. 6. Example scenarios generated by the IPE 

The scenarios shown in Fig. 6 are generated from the rules (see Fig. 5) programmed 
into the IPE. However, scenarios can also be generated using similar features such as 
attack origin address, target address, and port numbers found in the attack events. These 
kinds of scenarios show the attacks originating from one source to a single or multiple 
destinations.  

6   Experimental Evaluation 

The prototype E-NIPS is evaluated using various commonly occurring network 
penetration scenarios. However, we explain the evaluation process in detail using only 
two penetration scenarios (see Appendix A). Scenario-I is a penetration scenario 
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consisting of three phases simulated using attack tools [11, 20]. These attack tools 
generate attack events belonging to different phases of the penetration scenario. The 
experimental setup for this scenario consists of a network of hosts providing different 
services and the configuration information of the network is stored in the VPD. 
Scenario-II is a penetration scenario consisting of five penetration phases based on a 
scenario observed in 1999 MIT intrusion detection evaluation project [19]. We are 
aware of the limitations of this data source [21]. However, we just have chosen the 
most commonly occurring scenario and the general limitations of this dataset do not 
affect our evaluation objective. The alerts generated by the HACR and the NACR of 
E-NIPS during simulation of these penetration scenarios are stored in the IAD and 
used for the purpose of intrusion prediction. We have observed successful 
performances of E-NIPS in both the scenarios.  

From the experimental evaluation, we have observed that the implemented IPS 
provides ample information about attack classes that could occur in future. Moreover, 
in some cases, with the help of the data from the VPD, the EPD, and the heuristics 
discussed in Section 3.2, it can also predict highly probable attack events within the 
attack class. The creation of attack classes from attack alerts have made the 
correlation and prediction tasks simpler. In the experiments, the ongoing penetration 
phase was detected and prediction was made almost instantaneously. This shows that 
the IPE provides a time window of atleast few minutes for an administrator to defend 
the network. However, in real-world scenarios, the time gap between the time at 
which E-NIPS makes prediction about a future attack event and the time when that 
future attack event is actually detected can vary from few seconds to many hours or 
days. An attacker can launch the next set of attack events according to his/her own 
convenience, and hence, predicting the time of forthcoming attack events is difficult. 
However, based on the timings observed in the attack events from the earlier phases 
of a network penetration, the time of future attacks events may be predicted using 
various forecasting algorithms [2].  

7   Conclusions and Future Work 

This paper presents the concepts, method, and architecture of an intrusion prediction 
system along with the implementation and evaluation of a prototype IPS based on 
various simulated network penetration scenarios. The attack events having a common 
objective are grouped into one attack class, and instead of every attack event, we have 
considered attack classes during intrusion prediction. The sequence in which the 
attack classes occur during a network penetration and the conditional probability with 
which they occur is programmed into the prediction engine of the IPS as a set of 
predefined rules. Intrusion prediction is made considering various parameters related 
to the precursors to future attacks, vulnerability profile, reports of external worm/virus 
activities, and a set of heuristics. The IPS consists of host and network monitors that 
provide multi-point detection of attack events.  

The evaluation results show that this IPS can predict future attack events with 
reasonable accuracy and also estimate the extent of a penetration. Attack classes are 
used to reduce the number of penetration scenarios that have to be programmed into the 
prediction engine of the IPS. Attack class correlation and intrusion prediction provides 
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information of a network penetration and helps to defend the network. This tool can 
help in testing network penetrations and addressing the security risks of a network.  

E-NIPS can construct and predict only the network penetration scenarios 
programmed as predefined rules in the IPE. Without sufficient knowledge of existing 
network penetrations, it is difficult to program these rules. The proposed IPS would not 
be very useful if there is not enough time gap between network penetration phases like 
in zero day attack scenarios. In future, we intend to investigate the advantages of using 
various prediction models such as neural networks, decision tress, and markov chains in 
the prediction engine. We will also develop time-based prediction engine for forecasting 
seasonality, trends, and cycles in intrusion data. Predicting the time of occurrence of 
future attack events will also be considered in the time-based prediction engine. 
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Appendix: A 

A.1   Scenario-1 

The output generated by the predictor module of the IPE after each phase of Scenario-
I is shown in Fig. 7. The time t1, t2, and t3 represented in HH:MM:SS format in 
Fig. 7 indicate the start of each penetration phase. The generated alerts are mapped 
into four attack classes A0, E7, G4, and G5 by the classifier module. 

In Phase-1, the attacker performs network scanning and determines the presence of 
web server indicated by open port 80. RPC attacks, FTP attacks, and HTTP attacks 
are predicted by the IPE to occur in the next phase since the VPD is programmed for 
this experiment to indicate only these services running on the network. In Phase-2, 
indicated by WEB file access (E7) attack class, a potential vulnerable application file 
is accessed by the attacker during a buffer-overflow exploit attack on web server. The 
attack classes following E7 and related to web server attacks are predicted. In 
Phase-3, indicated by ATK-RSP directory listing attempt (G4) attack class, directory 
listing attempt is detected in the response traffic indicating the compromise of the web 
server from the attack from Phase-2. Among the attack classes predicted after 
Phase-3, ATK-RSP command-execution attempt (G5) is found to be executed by the 
attacker.  
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Fig. 7. Output from the IPE for Scenario-I after each phase of penetration 
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II is shown in Fig. 8. Here, Phase-1 and Phase-2 fall in the attack initiation stage, 
Phase-3 and Phase-4 are called attack progress stage, and Phase-5 is considered attack 
objective stage of a network penetration. The alerts were mapped into five attack 
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In Phase-1, the attacker performs network scanning using ICMP echo-requests and 
from the received ICMP echo-replies determines the hosts and services that are 
 

 

 

Fig. 8. Output from the IPE for Scenario-II after each phase of penetration 
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running within the network. RPC attacks, FTP attacks, and HTTP attacks are 
predicted by the IPE since the VPD is programmed for this experiment to indicate 
only these services running on the network. In Phase-2, indicated by RPC sadmin 
query decode (C6) attack class, the hosts discovered in Phase-1 are probed to detect if 
those hosts are running “sadmin” administration tool. The intention of the attacker 
being to use sadmin exploits against those hosts, and hence, RPC sadmin overflow 
(C3) and other RPC exploits (C11) attack classes are predicted.  

In Phase-3, indicated by RPC sadmin overflow (C2), the attacker attempts sadmin 
remote buffer overflow exploit on those hosts with sadmin tool and creates new root 
user accounts on the hosts on which the exploits are successful. The system is 
compromised at this stage, and therefore, Backdoor activity (F1) and Virus (F2) 
attack classes, remote connection attack classes RSH exploit (J1) and REXEC 
overflow (J3), and DoS attempt (D0) attack classes are predicted to follow. In 
Phase-4, indicated by RSH exploit (J1), the attacker telnets to the compromised hosts 
and uploads DDoS agent on the systems that are compromised in the previous phase. 
DoS attempt (D0) and Data theft (O1) attack classes are predicted to follow this 
phase. In Phase-5, indicated by DoS attempt (D0), the attacker launches DDoS attacks 
on victim host using DDoS agents installed in the previous phase.  
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Abstract. Today, digital content is routinely distributed over the Inter-
net, and consumed in devices based on open platforms. However, on open
platforms users can run exploits, reconfigure the underlying operating
system or simply mount replay attacks since the state of any (persistent)
storage can easily be reset to some prior state. Faced with this difficulty,
existing approaches to Digital Rights Management (DRM) are mainly
based on preventing the copying of protected content thus protecting
the needs of content providers. These inflexible mechanisms are not ten-
able in the long term since their restrictiveness prevents reasonable usage
scenarios, and even honest users may be tempted to circumvent DRM
systems.

In this paper we present a security architecture and the correspond-
ing reference implementation that enables the secure usage and transfer
of stateful licenses (and content) on a virtualized open platform. Our
architecture allows for openness while protecting security objectives of
both users (flexibility, fairer usage, and privacy) and content providers
(license enforcement). In particular, it prevents replay attacks that is
fundamental for secure management and distribution of stateful licenses.
Our main objective is to show the feasibility of secure and fairer distri-
bution and sharing of content and rights among different devices. Our
implementation combines virtualization technology, a small security ker-
nel, trusted computing functionality, and a legacy operating system (cur-
rently Linux).

Keywords: Trusted Computing, security architectures, stateful licenses.

1 Motivation

Timo was about to board a train home when he noticed an advertisement for
a wireless kiosk selling the first album from a new band. He took out his music
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phone, connected the kiosk which was already visible in his music gallery appli-
cation, and with a few clicks downloaded a preview copy of the lead song in the
album. While on board the train, Timo listened to the song and liked it so much
that he listened to it once more. When he tried to listen a third time, the phone
told him that he had finished the free previews, but can buy a full license. He
bought the full license with a few more clicks and could listen to the song with
no constraints. When he got home, he transferred the song to his home stereo
system. When Anna visited Timo, he played the new song to her. She wanted
a copy of her own. Timo used the remote control of his stereo system to lend
a copy to Anna’s music phone for a week. Timo’s copy of the song remained
disabled for a week while Anna was enjoying the song.

This and other similar scenarios for trading and using digital goods involve
policies whose enforcement requires the enforcement mechanism to securely
maintain state information about past usage or environmental factors. They
can be enforced by using stateful licenses. Some e-business applications already
deploy such (mostly proprietary) stateful licences to sell certain digital goods
(online video, music tracks, software), for limited use (number of copies or tri-
als, etc.) [2,17,29].

However, managing and enforcing stateful licenses on open platforms is dif-
ficult. Open platforms are under the control of their owners, who can attack
and circumvent even sophisticated protection mechanisms by running exploits
and reconfiguring the underlying operating system. Existing enforcement mech-
anisms have been defeated in various ways [32,33]. An attacker can easily record
the platform state (e.g., hard-disks) and revert the platform to this state at a
future point in time. This way he can reset a stateful license to a prior state
and consequently circumvent license conditions. This can be done for instance
by ordinary backup mechanisms or by applying software tools [9] that log all
storage modifications to easily revoke these modifications for reuse of a license.
Consequently, content providers tend to provide inflexible static licenses, which
prevent users from any kind of transfer of licenses, including moving to other
devices, lending or selling to other users. This approach is not tenable in the
long term because its restrictiveness prevents reasonable usage scenarios like the
above from being realized. Even honest users, frustrated at not being able to
do what they consider reasonable, will be tempted to circumvent the license
enforcement mechanisms.

Some systems attempt to augment open platforms with tamper-resistant hard-
ware devices such as dongles [7] or smartcards [4]. Others have used closed
systems [12] that consider only the providers needs The use of additional, ex-
ternal devices, however, cannot guarantee the integrity of the operating system
and a proper behavior of applications since manipulations of the operating sys-
tem or corresponding applications frequently allow users to bypass the security
mechanisms.

Main Contribution: In this paper we present a security architecture and the cor-
responding reference implementation that enables secure enforcement of stateful
licenses on open computing platforms as well as secure license transfers among
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platforms. Our proposed architecture allows for protecting the security objec-
tives of providers (license enforcement) and users (flexibility, fairer usage, and
privacy). Our main goal is to show the feasibility of the legal and fairer usage
allowing for transfer of licenses. To the best of our knowledge there currently
exists no solution that is capable of enforcing stateful licenses on open platforms
while providing security functionalities that allow to establish multilateral secu-
rity. We show how our architecture can efficiently be implemented using existing
virtualization and trusted computing technology.

1.1 Related Work

Shapiro and Vingralek [27] identified the replay problem in client platforms that
are completely under the control of the user. The authors proposed to manage
persistent states using external locker services or assumed a small amount of
secure memory and secure one-way counters realized by battery-backed SRAM
or special on-chip EEPROM/ROM functions. Tygar and Yee [37] elaborate on
enforcement of static and dynamic licenses without centralized servers. They
present a secure bootstrap process and protocols for sealing of data to a local
and remote platforms. The proposed architecture relies on a microkernel which is
running in a physical security partition provided by a secure coprocessor. This is
different to our approach which is based on a virtualization layer offering logical
security partitions (“compartments”).

Marchesini et al. [15] use OS hardening to create “software compartments”
which are isolated from each other and cannot be accessed by a “root spy”. Based
thereon, their design provides “compartmentalized attestation”, i.e. attestation
and binding of data to single compartments. Our approach does not employ OS
hardening techniques to secure a complex monolithic legacy OS. Instead we put
the legacy OS in a compartment which is then run on top of a virtualization
layer. The performance loss is minor and the overall security improves, since the
virtualization layer is much less complex than a monolithic OS kernel. Baek and
Smith [6] build on Marchesini’s work and implement a prototype for enforcing
QoS policies on open platforms.

Publicly available documentation for common rights management systems
from Microsoft [18], Authentica [5], or, Apple [2] do not mention how they
resist replay attacks for their (proprietary) dynamic license implementations.
Moreover, most of these solutions are closed software and cannot be verified for
inherent security flaws. Some existing solutions affect the entire host security
or violate user privacy [22], while others could be broken [32,33], and provide
license transfers only to some selected devices. This point clearly contradicts
the first sale concept: the licensor should be allowed to securely transfer legally
obtained digital content without permission or interaction of the licensee. Other
approaches [14,20] use small-value or short-term sublicenses based on a single
source license to transfer rights. Since users of these systems always have full
control over the platform storage, they can easily backup their (sub-)licenses
and restore them after expiration. In [26], the authors propose an operating sys-
tem extension that attests an integrity measurement (a SHA-1 digest over all
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executed content) based on a cryptographic coprocessor. The proposed architec-
ture allows a content provider to remotely verify the integrity of software and
data of a client platform. However, this approach, reveals the user’s overall plat-
form configuration to the content provider, conflicting with the privacy principle
of least information. Also, the content provider will only attest the last platform
configuration given and is not able to predict future configuration. And even
if periodic attestation was compelled, a client could still apply replay attacks
between two measurements.

The Enforcer project [16] considers freshness by using the (non-volatile) data
integrity register (DIR) of the TCG (Trusted Computing Group) specification
version 1.1b [36]. Writing to a DIR requires owner authorization, reading can be
done by anyone. Since the platform owner can still backup and restore the DIR
storage, this is not secure against replay attacks.

2 System Model

2.1 Terms and Definitions

The main parties involved are providers (licensors) and users (licensees). We
consider a provider as the representative party for rights-holders whereas the
user represents consumers of digital content. These parties have only limited
trust in each other. As shown in Figure 1, the provider distributes digital content
(e.g., software, media files) together with the corresponding license, which defines
the usage-rights (e.g., copy, play, print) applicable to the content. The user
consumes content according to the license where the consumption is managed
by the underlying platform. We distinguish two types of licenses, immutable
static licenses and stateful licenses where the internal license state may change
when it is used. This allows for many use cases where content consumption is
somehow limited (e.g., n days or n times), or for transfer of licenses among
devices.

Furthermore, we define a compartment as a software component that is
logically isolated from other software components. Isolation means that these
components can communicate or access each others data only over specified
interfaces. The configuration of a compartment unambiguously describes the
compartment’s I/O behavior. We call the process of deriving the configuration
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of a compartment measurement according to a well-defined metric. We distin-
guish secure and trusted communication channels between compartments. Secure
channels ensure confidentiality and integrity of the communicated data as well
as the authenticity of the endpoint compartment. A trusted channel is a secure
channel that is bound to the configuration of the endpoint. More concretely,
the channel additionally allows each endpoint compartment to (i) validate the
configuration of the other endpoint compartment and (ii) to bind data to the
configuration of the endpoint compartment such that solely and exclusively this
compartment with this configuration can access the data. We define the Trusted
Computing Base (TCB) as the set of all system components whose failure would
allow to breach the security policy defined for the platform (e.g., as agreed by
the involved parties). Note that the main design goal is to minimize the TCB.

2.2 Architecture Overview

Figure 1 gives a general overview of our architecture. The Trusted Computing
Base (TCB) for our purpose (application) includes the following compartments:
the Trust Manager (TM), the Storage Manager (SM), the Compartment Man-
ager (CM), the Secure I/O (SO) compartment, and the DRM Controller (DC).
Note that these components are in general distributed since all compartments
communicate over trusted channels, and hence, there is no restriction on their
actual physical location. In the following we briefly describe the compartments
and core security properties of our architecture.

Compartment Manager (CM) initializes and closes compartments as well as mea-
sures compartments’ configurations during initialization. Furthermore, CM en-
ables a mapping between temporary compartment identifiers1 and persistent
compartment configurations.

Trust Manager (TM) offers basic trusted computing services and a functionality
that can be used by other compartments to, e.g., establish trusted channels
between compartments.

Storage Manager (SM) provides persistent storage for other compartments while
preserving integrity, confidentiality, authenticity (by binding data to the com-
partment configuration and/or user secrets), and freshness of the stored data.
Since a complete tamper-resistant storage unit would be very costly and inflex-
ible, we used untrusted storage, i.e., a regular harddisk, with the help of TM.

Secure I/O (SO) renders (e.g., displays, plays, prints) content while preventing
content leakage into untrusted compartments. Thus SO incorporates all func-
tionality required for rendering a certain content, e.g., all corresponding drivers,
rendering engines, and decoders. Moreover, access control in our architecture
allows SO to communicate only with devices essential for the rendering process.

DRM Controller (DC) is a compartment that enforces the policy according to
a given license attached to digital content. DC enforces security policies locally,

1 A compartment identifier unambiguously identifies a compartment during runtime.
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e.g., it uses trusted channels to decide whether a certain SO is trusted for ren-
dering the content.2 DC interprets the license and initiates content rendering.
Moreover, DC is the core component for license transfers (cf. Section 2.3). Avail-
able content and licenses are internally indexed by DC while the index, content
and licenses are persistently stored using the Storage Manager SM.

Trusted Channels as mentioned in Section 2.1, allow the involved communication
end-points (compartments) to validate the configuration of the other endpoint
for integrity and consequently allow determining the trustworthiness (as spec-
ified by the underlying security policy). The data sent over a trusted channel
is exclusively bound to the configuration of the endpoint compartment as mea-
sured by the CM. In contrast to other approaches such as [26], which report
the whole platform configuration, our architecture provides trusted channels be-
tween single compartments reducing the amount of information disclosed about
the platform (privacy aspects).3 Trusted channels can be established using the
functionality offered by the Trust Manager TM. Note, we call trusted channels
between compartments running on the same platform as local trusted channels.

Strong Isolation means runtime isolation of compartments as well as data isola-
tion in persistent storage. Runtime isolation is provided by the underlying vir-
tualization layer (cf. Section 3.1), and the isolation of compartments’ persistent
state is provided by the Storage Manager (SM).

2.3 Usage and Transfer of Licenses

In the following, we define the basic mechanisms for secure license usage and
license transfers. For this we assume the following to be given, and explain
in Section 3 how they are implemented: (i) strong compartment isolation (cf.
Section 3.1), (ii) the proper initialization of the TCB (cf. Section 3.2), and (iii)
the availability of trusted channels with freshness detection (cf. Section 3.3).

On startup, DC loads its actual content/license index iDC from the Storage
Manager SM using a (local) trusted channel. To provision licenses the provider
establishes a trusted channel to DC. Over this channel the content and licenses
are sent to DC and locally stored by SM. For using (stateful) licenses the user
invokes DC, which loads the corresponding license, checks if all conditions for
the corresponding usage-rights are fulfilled, and opens a (local) trusted channel
to the secure I/O compartment SO. On the execution of the usage-right, DC
updates the state of the license, synchronizes its internal state iDC with the one
stored by SM, decrypts the corresponding content, and invokes SO to securely
render it. For transferring stateful licenses from a source controller DCs to a
destination controller DCd the following steps are be taken:

2 DC’s decision is based on either a approved configuration described in the license or
on the platform security policy associated with the actual TCB configuration.

3 Further advantages of our approach are scalability and flexibility: it need not to
verify the integrity of all compartments executed on the platform and the integrity
verification remains valid even if the user installs or modifies other compartments
since the verification is independent of other compartments running in parallel.
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1. The user requests DCs to transfer a license L to DCd. DCs uses TM to estab-
lish a fresh trusted channel to DCd to send the license (and corr. content).

2. TM establishes a trusted channel with freshness detection to DCd allowing
DCs to verify that the configuration of DCd is conforming to the security
policy of L. Note that DCd does not need the equivalent verification for DCs

since the overall security architecture protects and enforces any license once
accepted into any DCs, regardless of the source of the license.4

3. Once the decision to transfer L to DCd is made, DCs invalidates L locally
while synchronizing its internal state iDC with SM where the identity of DCd

(e.g., a public key) is stored together with the license identity to handle
possible further requests from DCd (e.g., when the channel was disconnected
for some reason). Note that freshness detection (cf. Section 3.3) will ensure
that DCd will accept L only once.

4. DCs sends L (and corr. content) to DCd over the fresh trusted channel. To
handle transmission failures, DCs allows retransmissions requests to DCd.

The procedure for lending a license is similar to a license transfer: if the
license allows lending DCs generates a license for DCd valid for the loan period,
and updates the state of its own license so that it remains disabled during the
loan period. This assumes the availability of secure time.

2.4 Security Objectives

We consider the following security objectives of users and providers.

(O1) License integrity: Unauthorized alteration of licenses must be infeasible.
This is required by both provider and user.

(O2) License enforcement : The license can only be used according to the usage-
rights prescribed by the license and to the security policy defining require-
ments on DC.

(O3) Freshness : Replay of licenses must be infeasible. Received and retrieved
data is the last one sent or stored even in the case of a platform re-
installation.

(O4) Privacy: Usage or transfer of licenses must not violate privacy policies.
This concerns in particular the least information policy such that compo-
nents not under full control of the user shall be able to collect, store, and
reveal user’s private information only to the extent required for license
enforcement.

The system is not limited to a specific set of license issuers, and is capable
of enforcing the terms of any license accepted by the user. Requirements like
license issuance and unforgeability is considered out of the scope of this paper.
Distributed authorship proofs and rights management (e.g., as in [1]) can still
effectively be built based on our architecture.

4 As fallback solution, e.g., in case of a broken DC or a dishonest provider, DCd may
also verify the validity of DCs.
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3 Reference Implementation

3.1 Overview

Our implementation primarily relies on a small security kernel, virtualization
technology, and trusted computing technology. The security kernel, located as
a control instance between the hardware and the application layer, implements
elementary security properties like trusted channels and strong isolation between
processes. Virtualization technology enables reutilization of legacy operating sys-
tems and existing applications whereas TC technology serves as root of trust.
In our architecture a compartment maps to a running application or operat-
ing system, whereas a compartment configuration maps to a hash value of the
software binary including all initialization information. The architecture of our
implementation is shown in Figure 2 whose layers we describe below.
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Fig. 2. Security architecture

Hardware Layer. The hardware layer consists of commercial off-the-shelf PC
hardware enhanced with trusted computing technology as defined by the Trusted
Computing Group (TCG) [35]. TCG has published several specification for ex-
tending the common computing platforms with cryptographic and security fea-
tures in hardware and software. The main TCG specification is Trusted Platform
Module (TPM) [36], which is currently implemented as dedicated cost-effective
crypto chip mounted on mainboards of computing devices5. Many vendors al-
ready ship their platforms with TPMs (mainly laptop PCs and servers) providing
the following features: A hardware-based random number generator (RNG), a
cryptographic engine for encryption and signing (RSA) as well as a cryptographic
hash function (SHA-1, HMAC), read-only memory (ROM) for firmware and cer-
tificates, volatile memory (RAM), non-volatile memory (EEPROM) for internal

5 TPMs are assumed tamper-evident and will only provide a limited protection against
hardware based attacks, due to the trade-off between costs and tamper protection.
Nevertheless, at least rudimentary tamper precautions and tampering-detection sen-
sors are included in the design and manufacturing process.
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keys, monotonic counter values and authorization secrets, and optionally, sen-
sors for tampering detection. Security critical operations (e.g., key generation
and decryption) are performed on-chip and security critical information (e.g.,
secret keys) never leave the TPM unencrypted. The TPM’s most important
keys were the endorsement key EK , an asymmetric key that uniquely identifies
each TPM; and the Storage Root Key SRK , an asymmetric key used to encrypt
all other keys created by the TPM. Note that neither EK nor SRK can be read-
out from the TPM. The TPM provides further a set of registers called Platform
Configuration Registers (PCR) that can be used to store hash values.6 During
system startup, a chain of trust is established by cryptographically hashing each
boot stage before execution. These hash values are also called measurements (in
the TCG terminology) and are stored in PCRs. The set of PCR values provides
is an evidence for the system’s state after boot. This state is called the platform
configuration. Based on this PCR set, among others, the two functions sealing
resp. binding can be provided to relate data to a platform configuration, sealing
additionally relating the data to the specific TPM instance using the TPM’s
endorsement key EK .
Virtualization Layer. The main task of the virtualization layer is to provide an
abstraction of the underlying hardware, e.g., CPU, interrupts, devices, and to of-
fer an appropriate management interface. Moreover, this layer enforces an access
control policy based on these resources. The current implementation is based on
microkernels7 of the L4-family [13]. It implements hardware abstractions such
as threads and logical address spaces as well as inter-process communication.
Device drivers and other essential operating system services, such as process
management and memory management, run in isolated user-mode processes. In
our implementation, we kept the interfaces between layers generic to support
also other virtualization technologies (e.g., Xen [25]). However, we decided to
employ a L4-microkernel that allows for isolation between processes without the
need to create a full OS instance in every compartment in contrast to Xen.
Trusted Software Layer. The trusted software layer, based on the PERSEUS
security architecture [19], uses the functionality offered by the virtualization
layer to provide security functionalities on a more abstract level. It provides
elementary security properties such as trusted channels, platform policy control
and compartment isolation. These realize security critical services independent
of and protected from application layer compartments. The main services of the
trusted software are described in Section 2.2.
Application Layer. On top of the security kernel, several instances of legacy op-
erating systems (here Linux) as well as security-critical applications (here the
DRM controller and Secure I/O) are executed in strongly isolated compart-
ments. Unauthorized communication between compartments and unauthorized
6 The hardware ensures that the value of a PCR can only be extended as follows:

PCRi+1 ← hash[PCRi|x], with the previous register value PCRi, the new register
value PCRi+1, and the input value x (e.g., again a hash value).

7 A microkernel is an OS kernel that minimizes the amount of code running in privi-
leged processor mode [21].
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I/O access is prevented. The proposed architecture offers an efficient migration
of existing legacy operating systems. We are currently running a para-virtualized
Linux [11]. The legacy operating system provides all operating system services
that are not security-critical and offers users a common environment and a large
set of existing applications. If a mandatory security policy requires isolation be-
tween applications of the legacy OS, they can be executed by parallel instances
of the legacy operating system.

In our reference implementation8, DC manages, based on XrML, license inter-
preting and license transfers for several audio formats. Using a Linux multimedia
library [10], our SO implementation provides the corresponding audio rendering
and play-back.

3.2 Verifiable Initialization

For verifiable bootstrapping of the Trusted Computing Base (TCB), a TCG-
enabled BIOS, called the Core Root of Trust for Measurement (CRTM), mea-
sures the the Master Boot Record (MBR), before passing control to it. A secure
chain of measurements is then established: Before a program code is executed it is
measured by a previously (measured and executed) component. For this purpose,
we have modified the GRUB bootloader (cf. www.prosec.rub.de/tgrub.html)
to measure the integrity of the TCB. The measurement results are securely
stored in the PCRs of the TPM. All further compartments, applications and
legacy OS instances are then subsequently loaded, measured, and executed by
the Compartment Manager CM.

3.3 Trust Manager and Trusted Channels

Our Trust Manager (TM) implementation is based on the open-source TCG
software stack [34]. Trusted channels can be established online or offline. The
former requires a direct connection between user and provider whereas the latter
does not. Examples are the online purchase of content and licenses at a provider
website or obtaining content offline via DVD or as indirect copy by a third party.

Figure 3 gives a description of the protocol for establishing a trusted channel.
The protocol can be decomposed into two major phases, namely issuing and
verifying a target certificate, and establishing a secret key whose usage is bound
to the configuration of the endpoint compartment and the underlying TCB.

If a remote compartment RC requests a trusted channel to a local compart-
ment LC, LC passes this request to TM. TM maps LC’s compartment identi-
fier to its compartment configuration comp conf LC using CM. TM then uses,
by the means of TPM CreateWrapKey[], the TPM to create a binding key pair
(PKBIND ,SKBIND ) where usage of SKBIND is restricted to the current TCB
configuration TCB conf measured during initialization (cf. Section 3.2). The
TPM then returns PKBIND and the SRK -encrypted9 secret part ESKBIND .
8 Most of the corresponding source code is available at www.emscb.org
9 The Storage Root Key (SRK) is a non-migratable key contained in the TPM as the

root key for protected storage.

www.prosec.rub.de/tgrub.html
www.emscb.org
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TPM_LoadKey[ESKBIND]

Fig. 3. Protocol for establishing a trusted channel

Then TM invokes the TPM to certify PKBIND and hence to certify comp conf LC
and TCB conf using an Attestation Identity Key (AIK)10. We denote the re-
sult by certBIND := TPM CertifyKey[PKBIND , comp conf LC]. Finally, TM re-
turns certBIND together with PKBIND and ESKBIND to LC. LC then stores
ESKBIND using SM and sends (certBIND , PKBIND ) to RC. RC verifies certBIND

and then the configurations (TCB conf , comp conf LC) by comparing them with
reference values (conforming to its security policy). If positive, RC generates a
secret key sk and encrypts it using PKBIND . The result is denoted by esk :=
Tspi Data Bind[PKBIND , sk ]11 and sent back to LC. Upon receipt of esk , LC loads
ESKBIND from SM and requests TM to unbind sk . For this, TM again requests
CM for mapping LC’s compartment identifier to comp conf LC. Having success-
fully verified that comp conf LC matches the configuration denoted in certBIND ,
TM requests the TPM to unbind sk . The TPM first compares the actual PCR
values to those SKBIND was restricted to, before returning sk to TM. Finally,
TM passes sk to LC that can now decrypt the data d (license and content)
received from RC. For online trusted channels, sk is used as session key to estab-
lish a secure channel inside a subsequent server-authenticated TLS connection
10 An AIK is a special, non-migratable, anonymized key that has been attested to come

from a TCG conform platform.
11 Tspi Data Bind[] is a TCG software stack function that does not require any TPM

hardware (functionality).
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between RC and LC12 whereas for offline trusted channels sk is used for encryp-
tion of data before being transferred using a indirect connection between RC
and LC.
Freshness extension. To tackle replay attacks we extend our trusted channels
with freshness. In case of an online trusted channel, freshness can be mutually
provided by the underlying TLS handshake protocol by binding the TLS channel
to LC (channel binding). This can be done in various ways, e.g., by including
certBIND in regular TLS certificates [31]. In case of offline trusted channels (or
without TLS) this can be provided by a slight protocol extension and/or mea-
sures at LC. Here different approaches are possible. A simple approach is to
require LC to memorize all licenses it has received (i.e., even expired ones) to
easily detect license replays. Eventually, this may amount to a huge license list,
and one solution is to update (PKBIND ,SKBIND ) from time to time. Another
solution is to let LC also send a nonce N together with (certBIND , PKBIND ).
In the last protocol step, RC encrypts N together with corresponding data d ,
so that LC can verify N (and thus freshness) of d and delete N after decryp-
tion. An alternative solution to nonces is to let LC create a different public key
pair (PKL,SKL) for each license, store SKL in SM, and send (PKL, certBIND ,
PKBIND ) to RC. Then RC encrypts data d as before using sk , but encrypts sk
with PKL and PKBIND , i.e., esk := Tspi Data Bind[PKBIND , encrypt PK L[sk ]],
and sends both quantities to LC. LC now can detect replays of already known
licenses by identifying PKL. Recall that there is a unique relation between PKL

and a license. Once a license has been expired or transferred, SKL can be deleted.
In all scenarios, all secret keys and freshness verification information is persis-
tently stored in trusted storage managed by SM (cf. Section 3.4). All solutions
can defeat replays even if the platform is completely re-installed since in this case
also all keys and freshness information (contained in SM) are deleted making the
the corresponding licenses and content inaccessible.

We have implemented this protocol on TPMs of some major vendors (cf. [24]
for more details). The TPM computation dominates the overall computation
time. Hence, depending on the efficiency requirements of the underlying applica-
tion, we have forseen a service (e.g., as part of the TM) that performs the related
TPM tasks in software (e.g., generating binding keys). This service is clearly a
part of the TCB and is included in the measurements during the verifiable ini-
tialization. In this case the trust assumptions of the TCB become stronger since
the secret binding key is now in software and not in the TPM security module.

3.4 Storage Manager

The main interfaces of Storage Manager SM (cf. Figure 4) are the trusted chan-
nels load[] and store[] for loading/storing data for requesting compartments, and
plain channels read[] and write[] for reading/writing data from/to an untrusted
storage compartment (e.g., a hard disk drive) to persistently write respectively

12 Alternatively, PKBIND directly can be integrated into the TLS handshake, e.g., to
encrypt RC’s pre-master-secret.
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Fig. 4. Implementation of SM

read data. Internally, SM maintains an index iSM for metadata of all managed
data objects. The main entries in this index are: the configuration comp conf of
the requesting compartment, the data object identifier dID, its freshness detec-
tion information f , possible further access restrictions rest (e.g., user id, group
id or date of expiry), a monotonic counter cSM verifying the freshness of iSM, and
a sealed kSM used to seal iSM to SM’s configuration.

To ensure freshness of the metadata the index iSM itself, SM manages an inter-
nal software counter cSM that is incremented synchronously with a TPM 1.213

monotonic hardware counter cTPM each time SM updates its index14. A mis-
match means outdated data which will be handled according to the underlying
security policy. In order to employ TPM’s monotonic counters, SM has to be
initialized correctly. Figure 5 depicts the steps needed for the first initialization
of SM on a new platform together with the initialization necessary for instance
after rebooting the platform. At initial setup SM uses the TPM to create its in-
ternal cryptographic key kSM, which is sealed to the current TCB configuration.
To enable freshness detection and thus trusted storage, SM creates a monotonic
counter cTPM with a label c label for identification and an authentication c auth
(e.g., a randomly chosen secret password). The initial setup finishes with the
generation of iSM and the sealed key ekSM and writing iSM (that includes cSM,
c label and c auth) encrypted on untrusted storage using kSM.

After a platform reboot, SM reads the ekSM from the untrusted storage and
asks the TPM to unseal ekSM to its internal key kSM. The TPM is able to unseal
kSM if the platform has the same configuration as it had at the sealing process,
thus preventing a modified SM to access kSM. Then SM uses kSM to decrypt iSM

13 TPM version 1.1b cannot be used for fresh storage [24].
14 As specified in [36] version 1.2, a TPM supports monotonic counters with an incre-

ment rate of at least once every 5 seconds other at least 7 years.
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and verifies freshness of iSM by comparing the decrypted counter value cSM of
iSM with the actual counter value of the corresponding hardware counter cTPM.

Figure 6 depicts the protocol steps required to bind a compartment’s data ob-
ject (e.g., iDC) persistently to its actual configuration. After the mapping of com-
partment identifier to the actual compartment configuration (e.g., comp conf DC)
using CM, SM updates iSM with the corresponding metadata as well as the incre-
mented software counter cSM to enable freshness detection for iSM. SM encrypts
both the data object and the updated index iSM using kSM and writes them to
untrusted storage. Finally, SM synchronizes its software counter cSM with the
TPM’s monotonic hardware counter cTPM (using c label and c auth) and returns
the data object identifier.

Figure 7 depicts the protocol steps required to load a compartment’s data
object. Again after a mapping of compartment identifier to the actual compart-
ment configuration using CM, SM reads the requested data object from untrusted
storage and decrypts it using kSM. Before returning d to the corresponding com-
partment, SM verifies all existing access restrictions (e.g., freshness, or a certain
user id) given on store via rest based on the corresponding metadata in iSM and
verifies that the requesting compartment has the same configuration as used on
store.

4 Security Considerations

In this section we sketch the security aspects of our implementation. First we
consider the core security properties (verifiable initialization, strong isolation,
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trusted channels, trusted storage) provided by our implementation. Based on
these properties we consider the individual security objectives (cf. Section 2.4).

Verifiable Initialization. It ensures that the TCB bootstrap is measured and
securely stored in the TPM (cf. Section 3.2). Other compartments can then
use TPM functionality to securely query the actual TCB configuration. Note
that subsequent modifications at runtime are not reflected by the initialization
measurements. However, a TCB configuration that would allow arbitrary alter-
nation/patches of core security components cannot be considered as trustworthy.

Strong Isolation. Runtime isolation is provided by the small virtualization layer
that implements only logical address spaces, inter-process communication and an
appropriate interface to enforce an access control management for the underlying
hardware. Device drivers and other essential operating system services, such
as process management and memory management, run in isolated user-mode
processes. Thus, the amount of code running in privileged (“ring 0”) processor
mode, is small15 and can, in contrast to monolithic operating system kernels16

such as Linux or MS Windows, be easier validated for correctness.
Moreover, a failure in one of these services cannot directly affect the other

services, especially the code running in privileged mode. Thus, malicious device
drivers cannot compromise core operating system services as they are all exe-
cuted in user-mode. Isolation in persistent storage is provided by our Storage
Manager (SM) implementation and the usage of trusted channels.

Trusted Channels. The establishment of a trusted channel is described detailed
in Section 3.3. The inter-process communication provided by the virtualization
layer enables secure channels between local compartments. Secure channels be-
tween local and remote compartments can be provided either by using the secret
key sk to establish a secret channel inside a tunnel created by standard security
protocols such as TLS [8] (online trusted channel) or by using sk to encrypt con-
tent at RC before sending it indirectly (e.g., via DVD or CD-ROM ) to LC (offline
trusted channel). As mentioned in Section 3.3 trusted channel enables access to
data only by an authorized compartment (trustworthy configuration). The con-
figuration of a compartment and the underlying TCB are securely measured
during the initialization (cf. Section 3.2). Replay attacks on trusted channels
can be defeated using one of the freshness solutions described in Section 3.3.

Trusted Storage. SM provides integrity, authenticity, confidentiality and freshness
of data as described in Section 3.4. The integrity and confidentiality are achieved
by using standard cryptographic mechanisms whereas monotonic hardware coun-
ters are used for freshness detection. We have improved common approaches
while taking advantage of the strong isolation capability of our architecture that
prevents the exposure of cryptographic secrets to unauthorized or malicious pro-
cesses. Our SM enables compartments to persistently bind their local state to
their actual configuration. The verifiable initialization (cf. Section 3.2) verifies

15 A microkernel-based approach can be realized with around 50.000 SLOC [28].
16 The sources lines of code (SLOC), e.g., for Windows XP are around 40 million and

around 6 million for a regular Linux 2.6 kernel [30].
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whether the TCB components booted are trustworthy, i.e., conform to the un-
derlying security policy.

Given these properties we sketch the analysis of the security objectives. Li-
cense integrity (O1): Trusted channels ensure that only mutually trusted com-
partments can modify a license, whereas strong isolation and trusted storage
prevent unauthorized alteration of licenses at runtime and while persistently
stored. License enforcement (O2): License and content are sent only to a local
compartment whose configuration matches that of DC. Further, the isolation
property prevents any other malicious code from accessing the content or mod-
ifying the license. Freshness (O3): The freshness extension (cf. Section 3.3) and
SM ensure that any data loaded is the last one stored. Privacy (O4): The prop-
erties of our architecture such as isolation and binding and the fact that security
policy defined by the platform owner restricts the I/O behavior of every appli-
cation imply that even if third party applications, like DC, can locally enforce
their own security policy, they cannot bypass the defined overall security pol-
icy. In particular, the information revealed to third parties (content providers)
is restricted following the least privilege policy, e.g., only the configuration of
the TCB and DC essential for transferring licenses are revealed. However, if it is
required not to reveal the TCB configuration a possible extension to our archi-
tecture would be to add property-based attestation service [23] to TM and CM
to hide both the (binary) configuration of the TCB and DC.

5 Summary

In this paper, we introduced the design, the realization and implementation of
an open security architecture that is capable to enforce stateful licences on open
platforms. Particularly, it allows the transfer of stateful licences, while preventing
replay attacks. We have shown how to implement this security architecture by
means of virtualization technology, an (open source) security kernel, trusted
computing functionality, and a legacy operating system (currently Linux).

The building blocks needed for stateful licenses can also enable offline su-
perdistribution [3]. For example, in our motivating scenario, Timo could gener-
ate a new license for Anna’s device. The DRM controller will record this fact
in its stateful license until Timo pays for the new copy. Allowing copies to be
made while still retaining the ability for proper metering and reporting of new
copies will enable rapid legal spread of popular content. We plan to describe this
extension more fully in a forthcoming paper.

Finally, copyright itself is a strongly debated topic. In course of time, the
world may develop alternative business models that do not require protection of
copyright in its current form. However, the type of platform security described
is also useful in many other applications like copy-protected ticketing, and elec-
tronic money. In fact, the same techniques that are used to protect the interests
of a third party from a malicious device owner can also help protect the device
owner from a thief who stole the device.
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24. Sadeghi, A.-R., Wolf, M., Stüble, C., Asokan, N., Ekberg, J.-E.: Enabling Fairer
Digital Rights Management with Trusted Computing. Tech. Rep. HGI-TR-2007-
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Abstract. We present the first traitor tracing scheme with efficient black-box
traitor tracing in which the ratio of the ciphertext and plaintext lengths (the trans-
mission rate) is asymptotically 1, which is optimal. Previous constructions in this
setting either obtained constant (but not optimal) transmission rate [16], or did not
support black-box tracing [10]. Our treatment improves the standard modeling of
black-box tracing by additionally accounting for pirate strategies that attempt to
escape tracing by purposedly rendering the transmitted content at lower quality.

Our construction relies on the decisional bilinear Diffie-Hellman assumption,
and attains the same features of public traceability as (a repaired variant of) [10],
which is less efficient and requires non-standard assumptions for bilinear groups.

Keywords: Traitor Tracing, Constant Transmission Rate, Fingerprint Codes,
Bilinear Maps.

1 Introduction

Traitor tracing schemes constitute a very useful tool against piracy in the context of
digital content distribution. They are multi-recipient encryption schemes that can be
employed by content providers that wish to deliver copyrighted material to an exclusive
set of users. Each user holds a decryption key that is fingerprinted and bound to his
identity. If a group of subscribers (the traitors) collude to construct an illegal device (the
pirate decoder), the security manager can run a specialized traitor tracing algorithm to
uncover the source of the leakage. Therefore, a traitor tracing scheme deters subscribers
of a distribution system from leaking information by the mere fact that the identities of
the leaking entities can then be revealed.

The first formal definition of traitor tracing scheme appears in Chor et al. [11,12],
whose construction requires storage and decryption complexity O(t2 log2 t log(n/t))
and communication complexity O(t3 log4 t log(n/t)), where n is the size of the uni-
verse of users and t is an upper bound on the number of traitors. Stinson and Wei later
suggested in [22] explicit combinatorial construction that achieve better efficiency for
small values of t and n.
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The work of [19,12] introduced the notion of threshold traitor tracing scheme, where
the tracing algorithm is only required to guarantee exposure of the traitors’ identities
for pirate decoders whose decryption probability is better than a given threshold β. The
scheme of [19] achieves storage complexityO(t/β log(t/ε)), where ε is the probability
of successfully tracing one of the traitors. Moreover, the scheme has communication
complexity linear in t and constant decryption complexity.

In [4], Boneh and Franklin present an efficient public-key traitor tracing scheme with
deterministic t-tracing based on an algebraic approach. Its communication, storage and
decryption complexities are all O(t). The authors also introduce the notion of non-
black-box traceability: given a “valid” key extracted from a pirate device (constructed
using the keys of at most t users), recover the identity of at least one traitor. This is in
contrast with the notion of black-box tracing (on which we focus in this paper), where
the traitor’s identity can be uncovered by just observing the pirate decoder’s replies on
“well crafted” ciphertexts. More recently, Boneh et al. [5,7] proposed traitor tracing
schemes that withstand any number of traitors (full traceability), while requiring a sub-
linear ciphertext length (O(

√
n)).

Constant Transmission Rate. As pointed out by Kiayias and Yung in [16], an impor-
tant problem in designing practical traitor tracing schemes is to ensure a low trans-
mission rate, defined as the asymptotic ratio of the size of ciphertexts over the size of
plaintexts, while at the same time minimize the secret- and the public-storage rates,
similarly defined as the asymptotic ratio of the size of user-keys and of public-keys
over the size of plaintexts.1 Under this terminology, the transmission rate of all the
above mentioned solutions is linear w.r.t. the maximal number t of traitors, whereas in
[16], Kiayias and Yung show that if the plaintexts to be distributed are large (which
is the case for most applications of traitor tracing, such as distribution of multimedia
content), then it is possible to obtain ciphertexts with constant expansion rate. Their
solution is based on collusion-secure fingerprint codes [6,23] and its parameters are
summarized in Figure 1.

Besides the clear benefit in terms of communication efficiency, schemes with con-
stant transmission rate also enjoy efficient black-box traceability, while schemes with
linear transmission rate are inherently more limited in this regard [15] (e.g., the black-
box traitor tracing of [4] takes time proportional to

(
n
t

)
).

In [10], Chabanne et al. extend the setting of [16] with the notion of public traceabil-
ity: Whereas traditional tracing algorithms require knowledge of the system’s secret in-
formation, in a scheme with public traceability everyone can run the tracing algorithm.
In this paper, we also consider local public traceability, whereby public information
suffices to carry out the preliminary phase of tracing, which requires interaction with
the pirate decoder, and results in an encoding of the traitor’s identity that can be decoded
with a master key. This separation of tasks ensures that the system’s secret information

1 We adopt a terminology slightly different from the one of [16], which uses the term cipher-
text/user-key/public-key rates, for what we called transmission/secret-storage/public-storage
rates. Moreover, in [16] transmission rate refers to the sum of the all the three rates. Our
choice is of course mostly a matter of taste: we prefer the terminology of this paper as it makes
more evident the role played by each quantity in a concrete implementation of the system.
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Trans. S-Storage P-Storage BB Public Hardness
Rate Rate Rate Tracing Traceability Assumption

BF[4] 2t + 1 2t 2t + 1 × × DDH
KY[16] 3 2 4

√∗ × DDH
CPP[10] 1 2 1 × × DBDH2-E ∧ DBDH1-M
PST[20] 7 1 1

√
full DDH

Repaired CPP 3 2 6
√

local DBDH2-E ∧ DBDH1-M
Our Scheme 1 2 10

√
local DBDH

Fig. 1. Comparison of rates (transmission, secret- and public-storage rates) and tracing features
(black-box tracing and public traceability) between existing schemes and our construction. The
“*” in the row labeled “KY” refers to the fact that the scheme of [16] can support black-box
tracing using the tracing algorithm that we describe in the full version [13] The row labeled
“PST” refers to instantiating their generic construction with ternary IPP codes and ElGamal-style
encryption. The row labeled “Repaired CPP” refers to the variant of the scheme of [10] that we
suggest in the full version [13] to support black-box tracing.

is only needed for off-line operations (i.e., user registration and possibly the final phase
of tracing), thus improving the overall security of the system by allowing for safer stor-
age solutions.

The work of [20] describes a traitor tracing scheme with constant (but not opti-
mal) transmission rate and (full) public traceability based on Identifiable Parent Prop-
erty (IPP) codes. Figure 1 also reports on these two schemes. One could think that
traitor tracing schemes with linear transmission rate (e.g. [4]) could easily be turned
into schemes with constant transmission rate by means of hybrid encryption: To send
a large message, pick a random session key, encrypt it with the given traitor tracing
scheme, and append a symmetric encryption of the message under the chosen anony-
mous session key. This approach, however, suffers from a simple yet severe untraceable
pirate strategy: Just decrypt the session key and make it available to the “customers”
on the black market, e.g., via anonymous e-mail, or via text-messaging from a pre-paid
cellphone. Clearly, when a traitor tracing scheme is used to encrypt the content directly,
this “re-broadcasting” strategy becomes much less appealing for would-be pirates, be-
cause of the higher costs and exposure risks associated with running a high-bandwidth
darknet.

Our Contributions. We present the first public-key traitor tracing scheme with efficient
black-box traitor tracing and local public traceability in which the transmission rate is
asymptotically 1, which is optimal. Encryption involves the same amount of computa-
tion as in [10]; decryption is twice as fast. We also considerably simplify the computa-
tional hardness requirements, relying just on the DBDH assumption—much weaker and
more widely accepted than the non-standard bilinear assumptions employed in [10].

Our treatment improves the standard modeling of black-box tracing by additionally
accounting for pirate strategies that attempt to escape tracing by purposedly rendering
the transmitted content at lower quality (e.g. by dropping every other frame from the
decrypted video-clip, or skipping few seconds from the original audio file).

As additional contribution, we point out and resolve an issue in the black-box tracing
of [16] (which was also independently addressed in a revised version of their work [17]).
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We then show that [10], which extends [16] and inherits its tracing mechanism, inherits
in fact the above-mentioned problem, too. In this case, however, fixing the black-box
functionality requires changes that intrinsically conflict with the optimizations put up
by [10] to achieve optimal transmission rate. In other words, [10] can either provide op-
timal transmission rate with only non-black-box tracing, or support local public trace-
ability with sub-optimal transmission rate, but cannot achieve both at the same time.

A Comparison with [5,7]. The schemes of [5,7] are the most efficient ones support-
ing full collusion, but they are not well suited for the more practical case of small
number of traitors (say, logarithmic in the size of the entire user population). Indeed,
in this case, the ciphertext in the schemes of [5,7] still contains O(

√
n) elements. In

our scheme, assuming the number of traitors t is logarithmic in the number of users
n, the ciphertext has poly-logarithmic length v = O(t2(logn + log 1

ε )) = O(log3 n),
which is asymptotically superior to the O(

√
n)-ciphertexts of [5,7]. More importantly,

the tracing algorithms of [5,7] require O(n2) decryption queries to the pirate decoder,
whereas our scheme employs O(v) = O(log3 n) decryption queries, and is moreover
completely parallelizable.

2 Preliminaries

The security properties of our construction hinge upon the decisional bilinear Diffie-
Hellman assumption (DBDH) for (G1,G2). We refer the reader to the full version of
this paper [13] for the relevant definitions.

Collusion-Secure Codes. Collusion-secure codes [6] provide a powerful tool against
illegal redistribution of fingerprinted material in settings satisfying the following Mark-
ing Assumption: 1) it is possible to introduce small changes to the content at some
discrete set of locations (the marks), while preserving the “quality” of the content being
distributed; but 2) it is infeasible to apport changes to a mark without rendering the
entire content “useless” unless one possesses two copies of the content that differ at
that mark. Below, we include a formalization of the notion of collusion-secure codes,
adapted from [6].

Definition 1. Let Σ be a finite alphabet, and n, v ∈ Z≥0. An (n, v)-code over Σ is a
set of n v-tuples of symbols of Σ: C = {ω(1), . . . , ω(n)} ⊆ Σv.

Definition 2. Let T be a subset of indices in [1, n]. The set of undetectable positions

for T is: RT = {
 ∈ [1, v] | (∀i, j ∈ T ).[ω(i)
� = ω

(j)
� ]}.

Notice that for each i ∈ T , the projection of each codeword ω(i) over the undetectable
positions for T is the same; we denote this common projected sub-word as ω|RT

. By
the Marking Assumption, any “useful” copy of the content created by the collusion of
the users in T must result in a tuple ω̄ whose projection over RT is also ω|RT

. This is
captured by the following:

Definition 3. The set of feasible codewords for T is: FT = {ω̄ ∈ (Σ ∪{?})v | ω̄|RT
=

ω|RT
}.
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Definition 4. Let ε > 0 and t ∈ Z≥0. C is an (ε, t, n, v)-collusion-secure code over Σ
if there exists a probabilistic polynomial-time algorithm T such that for all T ⊆ [1, n]
of size | T |≤ t, and for all ω̄ ∈ FT , it holds that: Pr[T (rC , ω̄) ∈ T ] ≥ (1 − ε), where
the probability is over the random coins rC used in the construction of the (n, v)-code
C, and over the random coins of T .

3 Public-Key Traitor Tracing Scheme with Public Traceability

Definition 5 (Public-Key Traitor Tracing Scheme). A public-key traitor tracing
scheme is a 5-tuple of probabilistic polynomial-time algorithms (Setup, Reg, Enc,
Dec, Trace), where:

Setup: On input a security parameter 1κ, a collusion threshold 1t, and a bound n
on the maximum number of users, returns a public key pk along with some master
secret information msk (cf. Reg and Trace);

Reg: Given msk and a user index i ∈ [1, n], outputs a “fingerprinted” user key ski;2

Enc: On input key pk and a message m (from the appropriate message space M,
implicitly described by pk), returns a (randomized) ciphertext ψ;

Dec: On input a user key ski and a ciphertext ψ, recovers the message encrypted
within ψ;

Trace: Given the master secret key msk, the public key pk, and black-box access to
a “pirate” decoder capable of inverting the Enc(pk, ·) functionality, returns the
user index of one of the traitors that contributed his/her user key for the realization
of the pirate decoder, or the special user index 0 upon failure.

For correctness, decryption with any user key output by Reg should “undo” encryp-
tion, i.e., Dec(ski,Enc(pk,m)) = m.

Definition 6 (Full/Local Public Traceability). A public-key traitor tracing scheme is
said to support: 1) public traceability if the Trace algorithm can be implemented with-
out the master secret key msk; or 2) local public traceability if the Trace algorithm
can be split in an on-line phase, in which the pirate decoder can be queried without
knowledge of the secret key, and an off-line phase, without access to the pirate decoder,
that can retrieve the identity of the traitor from the master secret key and the output of
the publicly executable on-line phase.

Definition 7 (Indistinguishability under Chosen-Plaintext Attack). A public-key
traitor tracing scheme satisfies εind-indistinguishability if, for any pair of probabilistic
polynomial-time algorithms (A1,A2), it holds that:

Pr

⎡⎢⎣A2(state, ψ∗) = b∗

∣∣∣∣∣∣∣
(pk,msk) R← Setup(1κ, 1t, n),

(m0,m1, state)
R← A1(pk),

b∗
R← {0, 1}, ψ∗ R← Enc(pk,mb∗)

⎤⎥⎦ ≤ 1
2

+ εind,

where the probability is over b∗, and the random coins ofA1, A2, Setup, and Enc.

2 Equivalently, we can think of Setup as outputting a vector of user keys, one per each user in
the system; we will refer to either formalization interchangeably.
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Requirements on the Tracing Functionality. Existing literature usually models black-
box traceability as the ability to “extract” the identity of (at least) one traitor from pirate
decoders that correctly invert the decryption algorithm (under appropriate efficiency and
success probability constraints). This approach, however, is often criticized because it
leaves the way open for pirate decoders that decrypt ciphertexts into plaintexts that
closely resemble (but are not identical to) the original plaintexts. To account for pi-
rate strategies of this sort, we allow traitors to specify a notion of “resemblance” in the
form of a polynomial-time reflexive, symmetric binary relationR over plaintexts, with
R(m,m′) = 1 if customers would accept m′ as a reasonable replacement for m.3 The
only semantic constraint onR is that it shall not be so lax as to deem random4 plaintexts

similar to fixed ones, i.e., the quantity pR
.= maxm∈M Pr[R(m,m′) = 1 | m′ R←M]

shall be negligible (otherwise tracing is impossible, since a keyless decoder could sim-
ply output a random plaintext as a “reasonable” decryption of any ciphertext). Similarly,
tracing needs only be effective against efficient decoders D whose success probability

pD
.= Pr[R(m,D(Enc(pk,m))) = 1 | m R←M] is non-negligible.

Definition 8. A public-key traitor tracing scheme is εtrac-traceable if for any proba-
bilistic polynomial-time traitor strategy A, it holds that:

Pr

[
TraceD(·)(pk,msk) �∈ T

∣∣∣∣∣(pk,msk) R← Setup(1κ, 1t, n),
(D,R) R← A(pk)Reg(msk,·)

]
≤ εtrac

where M is the message space, T ⊆ [1, n] is the set of up to t indices on which A
queried the Reg(msk, ·) oracle, D and R both run in probabilistic polynomial-time
and are such that pD is non-negligible and pR is negligible, and the probability is over
the coins of Setup, Reg, A, D and Trace.

Notice that Definition 8 subsumes the case that the traitor strategy A only produces a
“good” pirate decoder D with a low (but non-negligible) probability: indeed, any such
strategy can be “boosted” by simply keeping executing A on fresh random coins, until
the pirate decoder D that A outputs is a good one (which can be efficiently tested by
estimating D’s decryption capability on the encryption of a random plaintext).

4 Public-Key Traitor Tracing with Public Traceability, Black-Box
Tracing and Optimal Transmission Rate

Similarly to the schemes of [16] and [10], our construction is based on the use of
an (ε, t, n, v)-collusion-secure code C over the alphabet {0, 1} (cf. Definition 4). At
a high level, the idea is to first define a two-user sub-scheme resilient against a single
traitor, and then “concatenate” v instantiations of this sub-scheme according to the code
C. Although the overall architecture that we follow is well-known, achieving optimal
transmission rate along these lines requires solving a number of technical problems, on
which we elaborate in Section 4.4.

3 Alternatively, the resemblance relation R could be specified as a parameter of the scheme in
the definition of the Trace algorithm.

4 For the sake of simplicity, in this paper we discuss only the case of random sampling from M,
but the treatment generalizes to the case of other plaintext distribution with high min-entropy.
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4.1 Our Two-User Sub-Scheme

Setup: Given a security parameter 1κ, the algorithm works as follows:

Step 1: Generate a κ-bit prime q, two groups G1 and G2 of order q, and an admis-
sible bilinear map e : G1 × G1 → G2. Choose an arbitrary generator P ∈ G1.

Step 2: Pick random elements a, b, c ∈ Z
∗
q , and set Q

.= aP,R
.= bP, h

.=
e(P, cP ). Compute two linearly independent vectors (α0, β0) and (α1, β1) in
Zq such that bασ + aβσ = c mod q, for σ ∈ {0, 1}. The private key of the
security manager is set to be msk .= (a, b, α0, β0, α1, β1).

Step 3: For σ ∈ {0, 1}, let Aσ
.= ασR and Bσ

.= βσP . Choose a universal hash
function H : G2 → {0, 1}κ, and set the public key of the scheme to be the
tuple

pk .= (q,G1,G2, e,H, P,Q,R,A0, B0, A1, B1).5

The associated message space isM .= {0, 1}κ.

Reg: For σ ∈ {0, 1}, the secret key of user σ is set to be skσ
.= ασ . Notice that

cP = ασR+βσQ and hence h = e(P, cP ) = e(P, ασR)·e(Q, βσP ) = e(P,Aσ)·
e(Q,Bσ), for σ ∈ {0, 1}.

Enc: Given pk, anybody can encrypt a message m ∈ M by first selecting a random
k ∈ Zq and then creating the ciphertext ψ

.= 〈U, V,W 〉 ∈ G2 × G1 ×M where

U
.= e(P,R)k, V

.= kQ, W
.= m⊕H(hk)

Dec: Given a ciphertext ψ = 〈U, V,W 〉, user σ computes hk = Uασ · e(V,Bσ) and
recovers m = W ⊕ H(hk). Correctness of the decryption algorithm is clear by
inspection.

Trace: To trace a decoder D with resemblance relation, feed D with the “illegal”
ciphertext ψ̂

.= 〈e(P,R)k′
, kQ, m̂ ⊕ H(e(P,Aσ)k′

e(Q,Bσ)k)〉, for random σ ∈
{0, 1}, k, k′ ∈ Zq , m̂ ∈ M. If the output m∗ of D satisfies R(m̂,m∗) = 1, then
return σ as the traitor’s identity; otherwise, pick fresh random σ ∈ {0, 1}, k, k′ ∈
Zq, m̂ ∈M and repeat.

Before moving on to the security and traceability of our two-user scheme in the
sense of Definitions 7 and 8 (cf. Section 3), we remark that Trace does not require
knowledge of the master secret key msk, and thus it supports full public traceability (cf.
Definition 6). Also, notice that decryption requires only one pairing computation.

4.2 Indistinguishability Under Chosen-Plaintext Attack

Theorem 9. Under the DBDH assumption for (G1,G2), the scheme in Section 4.1 is
secure w.r.t. indistinguishability under chosen-plaintext attack (cf. Definition 7).

5 Note that there is no need to explicitly include h in the public key, as it can be derived as
h = e(P, Aσ) · e(Q,Bσ). Caching the value of h, however, is recommendable when public
storage is not at a premium, as that would save two pairing computations during encryption.
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Proof. To a contradiction, let us assume that the scheme does not satisfy Defini-
tion 7 i.e., there is an adversary A = (A1,A2) that, given the public key pk =
(q,G1,G2, e,H, P,Q,R,A0, B0, A1, B1), can break the scheme with non-negligible
advantage εind. We then construct an algorithm B (whose running time is polynomi-
ally related to A’s) that breaks the DBDH assumption with probability εDBDH = εind.

AlgorithmB is given as input an instance (P ′, xP ′, yP ′, zP ′, h′) of the DBDH prob-
lem in (G1,G2); its task is to determine whether h′ = e(P ′, P ′)xyz , or h′ is a random
element in G2. B proceeds as follows:

Setup: B sets P
.= xP ′ and Q

.= P ′. Then, B picks r
R← Z

∗
q , and sets R

.= rQ. B
now chooses β0, β1

R← Z∗
q and computes B0

.= β0P and B1
.= β1P . Then, B sets

A0
.= zP ′ and h

.= e(P,A0) · e(Q,B0). Finally, B sets A1
.= A0 + β0Q− β1Q,

so that in fact h = e(P,Aσ) · e(Q,Bσ), for σ ∈ {0, 1}, as required.
B can now set pk .= (q,G1,G2, e,H, P,Q,R,A0, B0, A1, B1) and send it to A1.

Challenge: A1 outputs two messages m0,m1 on which it wishes to be challenged,
along with some state state to be passed to A2. To prepare the ciphertext, B picks
random b∗ ∈ {0, 1}, and sets

U
.= e(P, yP ′)r(=e(P,R)y), V .= yP ′(=yQ),W .= mb∗⊕H(h′·e(yP ′, xP ′)β0).

(Notice that this implicitly defines k = y.) Then, B sends A2 the challenge cipher-
text ψ∗ .= (U, V,W ), along with the state information state.

Guess: Algorithm A2 outputs a guess b′ ∈ {0, 1}. B returns 1 if b′ = b∗ and 0 other-
wise.

If h′ = e(P ′, P ′)xyz , then A2 gets a valid encryption of mb∗ , since (as we verify
below) in this case the input to the hash function in the computation of W is just hk:

h′ · e(yP ′, xP ′)β0 =e(P ′, P ′)xyz · e(yP ′, β0(xP ′))=e(xP ′, zP ′)y · e(P ′, β0(xP ′))y

= e(P,A0)y · e(Q,B0)y = [e(P,A0) · e(Q,B0)]y = hy = hk,

as required by the encryption algorithm. Therefore, in this case A will successfully
guess b′ = b∗ with probability εind + 1/2.

On the other hand, when h′ is a random element of G2, the input to H is a random
value, independent of any other information in the adversary’s view. Since H is chosen
from a universal hash function family, its output is also (almost) uniformly random in
{0, 1}κ, so that the value of W (and hence the whole challenge ciphertext ψ∗) is com-
pletely independent from mb∗ . Thus, in this case b′ = b∗ holds with probability 1/2.

It follows that adversaryB breaks the DBDH assumption with non-negligible advan-
tage εDBDH = εind, contradicting our hardness assumption. ��

4.3 Traceability

To assess the effectiveness of the Trace algorithm from Section 4.1, we start with some
observations about the illegal ciphertexts that Trace uses in querying the decoderD:

Definition 10 (Valid and Probe Ciphertexts). Let σ∈{0, 1}, m̂∈M, Û ∈G1, V̂ ∈G2,
Ŵ =m̂⊕H(Ûασe(V̂ , Bσ)), and ψ̂ = 〈Û , V̂ , Ŵ 〉. We say that the ciphertext ψ̂ is:
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– valid, if Û = e(P,R)k, V̂ = kQ, for some k ∈ Zq;
– σ-probe, if Û = e(P,R)k′

, V̂ = kQ, for distinct k, k′ ∈ Zq .

Lemma 11 (Indistinguishability of Valid vs. Probe Ciphertexts). Under the
DBDH assumption for (G1,G2), given the public key pk = (q,G1,G2, e,H, P,Q,
R,A0, B0, A1, B1) and the secret key skτ = ατ of user τ ∈ {0, 1} (where Aτ = ατR),
it is infeasible to distinguish a valid ciphertext from a τ -probe.

Proof. For simplicity, assume τ = 0. We proceed by contradiction: assume there is an
adversary A that, given the public key pk = (q,G1,G2, e,H, P,Q,R,A0, B0, A1, B1)
and the secret key α0 of user 0, can distinguish valid ciphertexts from probes with
probability ε. We then construct an algorithm B (whose running time is polynomially
related to A’s) that breaks the DBDH assumption with probability εDBDH = ε.

AlgorithmB is given as input an instance (P ′, xP ′, yP ′, zP ′, h′) of the DBDH prob-
lem in (G1,G2); its task is to determine whether h′ = e(P ′, P ′)xyz or h′ is a random
element in G2. B proceeds as follows:

Setup: B lets P
.= xP ′, Q

.= P ′, R
.= yP ′, chooses α0, β0, β1

R← Z∗
q and computes

A0
.= α0R, B0

.= β0P and B1
.= β1P . B also sets A1

.= A0 + β0Q− β1Q, which
implicitly defines h = e(P,A0) · e(Q,B0) = e(P,A1) · e(Q,B1). B now defines
pk .= (q, G1, G2, e, H , P , Q, R, A0, B0, A1, B1). Then, B prepares a challenge
ciphertext ψ̂

.= 〈Û , V̂ , Ŵ 〉 by setting Û
.= h′, V̂

.= zP ′(= zQ, thus implicitly

defining k = z) and Ŵ
.= m̂ ⊕ H(Ûα0e(V̂ , B0)), for m̂

R← M. At this point, B
feedsA with pk, ψ̂, and α0.

Attack: A returns her guess to whether ψ̂ is a valid ciphertext or a probe (w.r.t. the
public key pk).

Break: B outputs yes or no accordingly.

If h′ = e(P ′, P ′)xyz , then A gets a valid ciphertext since h′ = e(xP ′, yP ′)z =
e(P,R)z , consistently with the value of V̂ = zQ, as required by the encryption algo-
rithm. Otherwise, h′ is a random value in G2, of the form h′ = e(P,R)k′

, for some
k′ totally independent from k = z, and thus ψ̂ is a 0-probe. Therefore, B breaks the
DBDH assumption with the same advantage as A’s i.e., εDBDH = ε. ��

An important consequence of Lemma 11 is that pirate decoders created by user τ reply
to τ -probes with an m∗ such thatR(m̂,m∗) = 1 with non-negligible probability p̂D:

Corollary 12. Let D, R be the pirate decoder and resemblance relation output by a
traitor strategy A based on the user key ατ , such that pD is non-negligible and pR is

negligible (cf. Definition 8). Let ψ̂ be a τ -probe for a message m̂
R← M. Under the

DBDH assumption, p̂D
.= Pr[R(m̂,m∗) = 1 | m∗ R← D(ψ̂)] is non-negligible.

Proof. To a contradiction, assume p̂D to be negligible. We then construct an efficient
algorithm B that, given pk and the secret key ατ of a single user, distinguishes valid
ciphertexts from τ -probes as follows: on input a ciphertext ψ̂ = 〈Û , V̂ , Ŵ 〉,B computes
m̂

.= Ŵ ⊕ H(Ûατ · e(V̂ , Bτ )) from ατ and ψ̂. Notice that this value m̂ is correct
regardless of whether ψ̂ is a valid ciphertext or a τ -probe. Then, B feeds D with ψ̂,
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getting back a value m∗. If R(m̂,m∗) = 1, then B concludes that ψ̂ must be valid;
otherwise, B concludes that ψ̂ is a τ -probe. In other words, B “interpolates” between
the experiment defining probabilities pD and p̂D, so that B’s advantage in discerning
valid ciphertext from τ -probes is clearly pD − p̂D. But if p̂D were negligible, such
algorithm B would violate the statement of Lemma 11, proving our argument. ��

The next lemma addresses the case of pirate decoders fed with probes of the “wrong
type”:

Lemma 13. Replacing ψ̂ with a (1 − τ)-probe in the setting of Corollary 12,
Pr[R(m̂,m∗) = 1] is negligible.

Proof. We start with the observation that if we could somehow remove the message
m̂ from the pirate decoder’s view, then our thesis would follow immediately, since m̂
would then be independent from the message m∗ output by D, and hence, by definition
of pR,R(m̂,m∗) = 1 would hold with probability pR, which is negligible.

In fact, m̂ occurs in D’s view only in the third component of the (1 − τ)-probe
ψ̂

.= 〈Û , V̂ , Ŵ 〉, as Ŵ = m̂ ⊕ H(Ûα1−τ e(V̂ , B1−τ )), so it suffices to show that
Ûα1−τ e(V̂ , B1−τ ) is indistinguishable from random inD’s view. SinceB0,B1 both ap-
pear in the public key pk of the system, this boils down to proving thatD cannot distin-
guish Ûα1−τ from random. It also holds that Ûα1−τ = e(P,R)k′α1−τ = e(P,A1−τ )k′

,
so that the task faced by D is to tell e(P,A1−τ )k′

apart from random, given e(P,R),
e(P,A1−τ ), and Û = e(P,R)k′

. But this is just the DDH problem for group G2, whose
hardness is implied by the DBDH assumption.

The above argument can be easily rephrased along the lines of the reductions de-
scribed in the proofs of Theorem 9 and Lemma 11; we refrain from doing so due to
space limitations. ��

Theorem 14. Under the DBDH assumption for (G1,G2), our Trace algorithm has a
negligible traceability error.

Proof. LetD,R be the pirate decoder and resemblance relation on which the Trace al-
gorithm is being run, and let τ be the traitor index. Corollary 12 guarantees that Trace
will on average terminate after 2/pD queries to D. Upon termination, Trace’s output
will be wrong only if it happens that D replies to a (1 − τ)-probe ψ̂ with an m∗ sat-
isfying R(m̂,m∗) = 1, i.e., Pr[TraceD(·)(pk,⊥) �∈ T ] = Pr[ψ̂ is a (1− τ)-probe |
R(m̂,m∗) = 1], which by Corollary 12, Lemma 13, and Bayes’ theorem is easily seen
to equal pR/(pD + pR), which is negligible. ��

4.4 Our Multi-user Scheme

As mentioned at the beginning of Section 4, a common approach to extending a two-
user construction to the multi-user setting is to concatenate several instantiations (say,
v) of the basic two-user scheme. Tracing in the resulting multi-user scheme can then
be performed iteratively as a sequence of v stages; in each stage, the pirate decoder
is queried with ciphertexts that are valid in all v components, except for one, which
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instead is crafted according to the Trace algorithm of the two-user construction. In
this way, if the decoder does not have both sub-keys for the component currently under
testing, it will be unable to tell that the ciphertext is invalid, and so the tracing procedure
of the two-user subscheme will determine which of the two sub-keys the decoder holds
for that component.

Since tracing requires the ability to set up each component of the ciphertext indepen-
dently of all the others, it may seem necessary to use completely unrelated instantiations
of the two-user sub-scheme for each component. This is done, for example, in [16].
Having independent components, however, clearly leads to a multi-user scheme with
the same transmission rate as the underlying basic two-user scheme, and so it would
not help us attaining optimal transmission rate. In fact, the scheme of [10] manages
to get transmission rate 1 by sacrificing component independence, and instead using
component-instances all very closely related to each other. As we show in the full ver-
sion [13], though, their scheme does not support black-box traceability.

To solve this tension between transmission rate and black-box traceability, we move
from the observation that, at each stage, it suffices that a single component can be ap-
propriately set up independently from the rest; the remaining v − 1 can all be closely
related to each other. Therefore, ciphertexts in our construction include a “special” po-
sition 
, where encryption is performed with instance of our two-user scheme that is
specific to the 
-th component; the remaining (v − 1) positions, instead, are encrypted
using a “shared” two-user scheme.

To prevent pirate decoders from selectively ignoring the “special” position (which
is the only part of the ciphertext that encodes tracing information), we follow the ap-
proach proposed in [16], by which the encryption algorithm preliminarily processes the
plaintext with an All-Or-Nothing transform (AONT) [21,8,9]. This will force decoders
to decrypt all blocks of the ciphertext, since ignoring even a single one would result in
missing at least one block of the AONT-transformed plaintext, so that, by the proper-
ties of AONT’s, such decoders would fail to recover any information about the original
plaintext being transmitted. We remark that reliance on AONT’s to force the pirate to
include (at least) one key for each component was suggested in [16], but later dismissed
by the authors in [17] as ineffective for the black-box setting, since it cannot prevent
cropping of the plaintext once it has been decrypted. However, we believe their critique
to be misleading, since traitor strategies in which the pirate decoder tampers with the
decrypted plaintexts are dealt with the use of the resemblance relation R (see discus-
sion in Section 3), while AONT’s prevent the pirate from learning anything about the
plaintext if even a single block cannot be decrypted.

For the sake of clarity, we first describe the scheme without explicitly mentioning
the AONT pre-processing, and later discuss the details regarding the use of AONT’s.

Setup: Given the security parameters 1κ, 1t and ε, the algorithm works as follows:
Step 1: Generate a κ-bit prime q, two groups G1 and G2 of order q, and an admis-

sible bilinear map e : G1 × G1 → G2. Generate an (ε, t, n, v)-collusion-secure
code C = {ω(1), . . . , ω(n)}.

Step 2a: Generate v independent copies of the 2-user scheme described in Sec-
tion 4.1 (call these copies the special schemes). In particular, for j = 1, . . . , v,
let Pj be a generator of G1; pick random elements aj , bj, cj ∈ Z

∗
q , and set
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Qj
.= ajPj , Rj

.= bjPj , hj
.= e(Pj , cjPj). Also, for j = 1, . . . , v, com-

pute linearly independent vectors (αj,0, βj,0), (αj,1, βj,1) ∈ Z2
q such that

bjαj,σ + ajβj,σ = cj mod q, for σ ∈ {0, 1}.
Step 2b: Generate one more independent copy of the 2-user scheme of Section 4.1,

in which we additionally select v values for h (call this the shared scheme).
At a high level, the shared scheme can be thought of as v parallel copies of
the 2-user scheme of Section 4.1, sharing the same values P , Q and R. More

precisely, draw P
R← G1, a, b

R← Z∗
q , and set Q

.= aP , and R
.= bP ; then, for

each j = 1, . . . , v, select c̄j ∈ Z∗
q and set h̄j

.= e(P, c̄jP ). Also, for each j =
1, . . . , v, compute two linearly independent vectors (ᾱj,0, β̄j,0), (ᾱj,1, β̄j,1) in
Z2

q such that bᾱj,σ + aβ̄j,σ = c̄j mod q, for σ ∈ {0, 1}.
Step 2c: The master secret key msk of the security manager is set to be:

((aj , bj, (αj,0, βj,0, αj,1, βj,1))j=1,...,v, a, b, (ᾱj,0, β̄j,0, ᾱj,1, β̄j,1)j=1,...,v)

Step 3: For j = 1, . . . , v and σ ∈ {0, 1}, let Aj,σ
.= αj,σRj , Bj,σ

.= βj,σPj ,
Āj,σ

.= ᾱj,σR and B̄j,σ
.= β̄j,σP . Choose a universal hash function H : G2 →

{0, 1}κ, and set pk to:6

(H, (Pj , Qj, Rj , Aj,0, Bj,0, Aj,1, Bj,1), P,Q,R, (Āj,0, B̄j,0, B̄j,1))

for all j = 1, . . . , v. The associated message space isM .= ({0, 1}κ)v .
Reg: For each user i, the security manager first retrieves the corresponding codeword

ωi ∈ C and sets his/her secret key to: ski
.= ((α

j,ω
(i)
j

)j=1,...,v, (ᾱj,ω
(i)
j

)j=1,...,v).
Notice that, for j = 1, . . . , v, it holds that:

cjPj = α
j,ω

(i)
j

Rj + β
j,ω

(i)
j

Qj and hence hj = e(Pj , Aj,ω
(i)
j

) · e(Qj, Bj,ω
(i)
j

),

c̄jP = ᾱ
j,ω

(i)
j

R+ β̄
j,ω

(i)
j

Q and hence h̄j = e(P, Ā
j,ω

(i)
j

) · e(Q, B̄
j,ω

(i)
j

).

Enc: Given pk, anybody can encrypt a message m = (m(1)‖ . . . ‖m(v)) ∈ M as
follows:

First, select 

R← {1, . . . , v} and k�

R← Zq , and compute the special component
of the ciphertext (U�, V�,W�) ∈ G2 × G1 × {0, 1}κ, where U�

.= e(P�, R�)k� ,
V

.= k�Q� and W�
.= m(�) ⊕H(hk�

� ).

Then, select k
R← Zq , and compute the remaining pieces of the ciphertext as:

(U, V,W1, . . . ,W�−1, W�+1, . . . ,Wv), where U
.= e(P,R)k, V

.= kQ, and Wj
.=

m(j) ⊕ H(h̄k
j ), for j = 1, . . . , v, j �= 
. The ciphertext is set to be the tuple

ψ
.= 〈
, U�, V�, U, V,W1, . . . ,Wv〉.

Dec: Given a ciphertext ψ = 〈
, U�, V�, U, V,W1, . . . ,Wv〉 ∈ Z× (G2 × G1)2 ×M,
ui computes for each j = 1, . . . , v, j �= 
:

hk�

� = (U�)
α

�,ω
(i)
� · e(V�, B�,ω

(i)
�

) and h̄k
j = (U)

ᾱ
j,ω

(i)
j · e(V, B̄

j,ω
(i)
j

)

6 The shared scheme is not used for tracing, so Āj,1 can be safely omitted (Āj,0 is included only
so that h̄j can be computed).
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recoversm(�) = W�⊕H(hk�

� ) and m(j) = Wj ⊕H(h̄k
j ) (for j ∈ {1, . . . , v}\{
})

and outputs m
.= (m(1)‖ . . . ‖m(v)).

Trace: Given pk, anybody can extract the “traitor codeword” ω̂
.= (ω̂(1), . . . , ω̂(v)) ∈

{0, 1}v from a decoder D by making O(v) queries to D. At a high level,
the idea is to iteratively derive each ω̂(�) by feeding D with an invalid ci-
phertext that looks valid in the “shared” components, but is actually a probe
(in the sense of Section 4.3) on the 
-th “special” component. In this way,
if D contains only one of the two user-keys for the 
-th “special” two-user
component (say, α�,τ (�)), its reply will reveal the value of τ (�). More in de-
tail, to extract τ (�) from D, Trace queries D with ciphertexts of the form

ψ̂(�) .= 〈
, Û�, V̂�, U
(�), V (�),W

(�)
1 , . . . , Ŵ

(�)
� , . . . ,W

(�)
v 〉, where k�, k

′
�, k

(�) R←
Zq , m̂(�) = m̂

(�)
1 , . . . , m̂(�)

v is drawn at random from M, σ(�) is a random bit,

W
(�)
j

.= m̂
(�)
j ⊕H(hk(�)

j ) for each j = 1, . . . , v, j �= 
, and

Û�
.= e(P�, R�)k′

� V̂�
.= k�Q� U (�) .= e(P,R)k(�)

V (�) .= k(�)Q

Ŵ
(�)
�

.= m̂
(�)
� ⊕H(e(P�, A�,τ (�))k′

� · e(V̂�, B�,τ (�))).

Let m∗(�) .= (m∗(�)
1 ‖ . . . ‖m∗(�)

v ) be the plaintext output by D when fed with the
ciphertext ψ̂(�). If R(m̂(�),m∗(�)) = 1, then set ω̂(�) = σ(�); otherwise, pick fresh
random k�, k

′
�, k

(�) from Zq , m̂(�) fromM, σ(�) from {0, 1}, and repeat, until either
R(m̂(�),m∗(�)) = 1, or the iteration has failed some fixed polynomial number of
time, in which case ω̂(�) is set arbitrarily.

After this process has been repeated for 
 = 1, . . . , v, the resulting “traitor code-
word” ω̂ is handed to the tracer, who (knowing the random coins rC used in gen-
erating C) can run it through the tracing algorithm T (rC , ·) of the collusion-secure
code C, thus obtaining a value in {1, . . . , n, 0}, which is the output of Trace.

Remark 15. Since the Trace algorithm needs msk only in the off-line phase, which
does not access the pirate decoder and is much less computation-intensive,7 our multi-
user scheme supports local public traceability.

Remark 16. We bound the number of trials that Trace performs to extract each bit
ω̂(�) because a pirate decoder holding both keys for position 
 could cause the test
R(m̂(�),m∗(�)) = 1 to fail with probability 1. A suitable value for this bound is
O(1/pD), where pD is the success probability (over random valid ciphertexts) of the
decoder under tracing, which can be efficiently estimated using Chernoff bounds.

Remark 17. Notice that the size of the message blocks can be shrunk to any κ′ ≤ κ,
by choosing a universal hash function H : G2 → {0, 1}κ′

. This is possible as long as
κ′ > log v+log(1/ε) = O(log t+log log(n/ε)+log(1/ε)), which ensures that, during
tracing, the probability of a hash collision in any of the v components of the scheme is
bounded by ε. For a typical choice of parameters (n = 230, ε = 2−30, t = 30), κ′ can
be chosen as low as 64 bits.

7 For the scheme of [23], for example, such computation consists just of a matrix-vector multi-
plication.



84 N. Fazio, A. Nicolosi, and D.H. Phan

Pre-Processing Messages with AONT’s. An AONT is an efficient, unkeyed, random-
ized transformation, with the property that it is hard to invert unless the entire output is
known. (For a formal definition, see [8,9].) As for specific instantiations, Boyko showed
in [8] that the Optimal Asymmetric Encryption Padding (OAEP)[3] can be proven se-
cure as an AONT in the Random Oracle Model. In [9], Canetti et al. described con-
structions in the standard model based on the notion of Exposure-Resilient Functions.

For our purposes, it suffices to think of an AONT as a length-preserving algorithm
AONT(m; r), where m ∈ ({0, 1}κ)v−1 is the message to be processed and r is an
additional random value, of the same length as each message block i.e., |r| = κ. In

what follows, we denote byM
R← AONT(m) the process of selecting a random r from

{0, 1}κ and setting M ← AONT(m; r). The resulting AONT-transformed message
M = (M1, . . . ,Mv) is an element of ({0, 1}κ)v , so that it can be encrypted with the
Enc algorithm described above. We can thus define a multi-user scheme with AONT
pre-processing by modifying the Enc and Dec algorithms as:

Enc′(m) .= Enc(AONT(m)) Dec′(ψ) .= AONT−1(Dec(ψ))

Notice that the use of AONT pre-processing in the full-blown scheme implies an ex-
pansion in the message size by roughly a factor 1+1/v, which still results in an asymp-
totical unitary ciphertext-to-plaintext ratio.

4.5 Indistinguishability Under Chosen-Plaintext Attack

In this section, we assess the security of the multi-user scheme of Section 4.4. (For lack
of space, we defer all proofs for this section to the full version [13]).

We start by verifying the intuition that AONT pre-processing does not hurt security:

Lemma 18. If the multi-user scheme without AONT pre-processing is secure w.r.t. in-
distinguishability under chosen-plaintext attack, then the multi-user scheme with AONT
pre-processing is secure w.r.t. the same notion.

Next, we observe that the security of the multi-user scheme from Section 4.4 can be
reduced (via a hybrid argument) to the security of the two-user scheme from Section 4.1:

Lemma 19. If our two-user scheme is secure w.r.t. indistinguishability under chosen-
plaintext attack, then our multi-user scheme without AONT pre-processing is secure
w.r.t. the same notion.

In light of Theorem 9, our main security theorem follows immediately from
Lemmata 18 and 19:

Theorem 20. Under the DBDH assumption for (G1,G2), the scheme in Section 4.4 is
secure w.r.t. indistinguishability under chosen-plaintext attack.

4.6 Traceability

Similarly to the case of the 2-user scheme of Section 4.1, the traceability of our multi-
user scheme (with AONT pre-processing) is based on the notions of valid and probe
ciphertexts:
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Definition 21. Let 
 ∈ [1, v], σ ∈ {0, 1}, m̂ ∈ M, M̂ = (M̂1, . . . , M̂v)
R←

AONT(m̂), Û� ∈ G2, V̂� ∈ G1, k ∈ Zq , U = e(P,R)k, V = kQ, Wj =
M̂j ⊕ H(hk

j ) (j = 1, . . . , v, j �= 
), Ŵ� = M̂� ⊕ H(Ûα�,σ

� e(V̂�, B�,σ)), and

ψ̂ = 〈
, Û�, V̂�, U, V,W1, . . . , Ŵ�, . . . ,Wv〉. We say that the ciphertext ψ̂ is:

– valid, if Û� = e(P�, R�)k� , V̂� = k�Q�, for some k� ∈ Zq;
– (
, σ)-probe, if Û� = e(P�, R�)k′

� , V̂� = k�Q�, for distinct k�, k
′
� ∈ Zq .

Our analysis is organized as follows. Let T denote the set of indices of the t traitors.
Lemma 22 proves the computational indistinguishability of valid ciphertexts vs. (
, τ �)-
probes when only the τ � subkey is known for position 
. It follows (Corollary 23) that
pirate decoders must decrypt such (
, τ �)-probes correctly (w.r.t. the chosen resem-
blance relation). Lemma 24 then shows that instead (
, 1− τ �)-probes cannot be prop-
erly decrypted, and Lemma 25 combines Corollary 23 and Lemma 24 to argue that the
chances that the 
-th stage of tracing fails to extract the correct bit ω̂(�) = τ � from D
are negligible, which implies the overall traceability of our scheme (Theorem 26).

Lemma 22 (Indistinguishability of Valid vs. Probe Ciphertexts). Under the DBDH
assumption for (G1,G2), given the public key pk = (q, G1, G2, e, H , Pj , Qj, Rj ,
(Aj,0, Bj,0, Aj,1, Bj,1)j=1,...,v, P,Q,R, (Āj,0, B̄j,0, B̄j,1)j=1,...,v) and the secret keys
ski

.= ((α
j,ω

(i)
j

)j=1,...,v, (ᾱ
j,ω

(i)
j

)j=1,...,v) for each i ∈ T , it is infeasible to distinguish

valid ciphertexts from (
, τ �)-probes, if the codewords of all traitors in T have bit τ � at
position 
.

Proof. Since the 
-th “special” sub-schemes is completely independent from the rest of
our construction, the thesis follows as a simple reduction to Lemma 11. ��
Corollary 23. Let D, R be the pirate decoder and resemblance relation output by a
traitor strategy A based on the user keys of the traitors in T , such that pD is non-
negligible and pR is negligible (cf. Definition 8). Assume the codewords of all the
traitors in T have bit τ � at position 
, and let ψ̂ be an (
, τ �)-probe for a message

m̂
R← M. Under the DBDH assumption, p̂D

.= Pr[R(m̂,m∗) = 1 | m∗ R← D(ψ̂)] is
non-negligible.

Proof. Reduces to Lemma 22 exactly as Corollary 12 reduces to Lemma 11.

Lemma 24. Replacing ψ̂ with an (
, 1 − τ �)-probe in the setting of Corollary 23,
Pr[R(m̂,m∗) = 1] is negligible, if the AONT employed in the system is secure.

Proof. The argument described in the proof of Lemma 13 implies that the AONT-
transformed message block M̂� is computationally hidden from the pirate decoder’s
view. By the properties of AONT’s, the whole original message m̂ is then also compu-
tationally hidden from D, so that in fact m̂ is just a random message independent from
the output m∗ of D, and hence R(m̂,m∗) = 1 holds with probability pR, which is
negligible. ��
Lemma 25. Consider the 
-th stage of the Trace algorithm, when the tracer queries
the decoderD with (
, σ)-probes for random σ ∈ {0, 1}. If all codewords of the traitors
in T have bit τ � in the 
-th position, then the 
-th stage will terminate setting ω̂� = 1−τ �

with negligible probability.
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Proof. The assumption that D does not contain both keys for position 
 implies, by
Corollary 23, that the 
-th stage of Trace will on average terminate after 2/pD queries
to D. Upon termination, Trace’s output will be wrong only if it happens thatD replies
to an (
, 1− τ �)-probe ψ̂ with an m∗ satisfyingR(m̂,m∗) = 1, which by Corollary 23,
Lemma 24, and Bayes’ theorem is easily seen to equal pR/(pD + pR), which is negli-
gible. ��

Theorem 26. Under the DBDH assumption for (G1,G2), the multi-user Trace algo-
rithm from Section 4.4 has a negligible traceability error.

Proof. Let ω̂ = (ω̂(1), . . . , ω̂(v)) be the “traitor codeword” recovered at the end of the
publicly traceable phase of Trace (cf. Section 4.4). By the union bound, Lemma 25
implies that ω̂ will be correct in all positions 
 where all traitors show the same bit,
except with negligible probability. By the collusion resistance of the code C underlying
the key assignment of Setup, the codeword-tracing algorithm T (cf. Definition 4) will
then be able to tie such traitor codeword ω̂ to the identity of one of the traitors in T
(except with negligible probability ε), as required. ��

Remark 27. As noted above, by employing AONT’s, the security and tracing capa-
bilities of our multi-user scheme follow almost directly from those of the embedded
“special” sub-scheme. In fact, even if we were to suppress the shared sub-scheme (e.g.,
by setting Wj = Mj , for j = 1, . . . , v, j �= 
), the multi-user scheme would still be
secure and tracing would still be possible (thanks also to the random rotation of the
special position 
 between 1 and v). Using the shared sub-scheme, however, reinforces
the semantic security of the scheme, though at the cost of a greater computational load,
due to the larger number of pairing computations needed for encryption and decryption.

5 Space and Time Parameters in a Concrete Instantiation

Existing constructions of constant-rate traitor tracing schemes (including ours) are
based on the use of collusion-secure fingerprint codes8 [6,23], and in particular are
applicable for messages of size proportional to the length of the code, which in the case
of the optimal codes due to Tardos [23] is O(t2(log n+log 1

ε )). For a typical choice of
parameters, e.g. user population n = 230, tracing error probability ε = 2−30 and trace-
able threshold t = 30, the resulting code length is about 5 million bits. Instantiating our
construction with such codes yields a scheme with plaintext and ciphertext of size 41
MBytes. (The ciphertext size is equal to the plaintext size, as the additive overhead is
less than 1 KByte.) These values are well within the range of multimedia applications,
since 41 MBytes roughly corresponds to 33 seconds of DVD-quality (high-resolution)
video, 4 minutes of VCD-quality (low-resolution) video and 25–50 minutes of audio.
The resulting public and secret keys roughly require respectively 1.5GByte and 206
MBytes. Although quite large, such a public key could be stored in commodity hard-
ware (e.g., it would fit in the hard disk of an iPod), whereas user secret keys could be
kept in Secure Digital memory cards, like those commonly available for PDAs.

8 [20] actually employs IPP codes, but similar considerations on code length and message size
apply to such codes as well.
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Another important issue for a concrete instantiation is the rate at which encrypted
content can be processed. In our scheme, decryption requires one paring per 1024 bits
of content, which, using the PBC Library [18] on a desktop PC, takes approximately
16 msec. However, in our context, the pairings to be computed all have one of their two
input-points in common: as reported in [2], pre-processing in similar settings more than
halves the computation time, so that one easily gets in the order of 128 pairings/sec,
corresponding to a near-CD-quality audio rate of 128 Kbits/sec. More specialized soft-
ware implementations [1] of the pairing operation can further reduce its computational
cost to around 3 msec; whereas hardware implementations, even under conservative as-
sumptions on the hardware architecture [14], can obtain running time below 1 msec,
attaining the 1Mbits/sec data rate needed for VCD-quality video.

6 Conclusion

We present the first public-key traitor tracing scheme with efficient black-box tracing
and optimal transmission rate. Our treatment improves the standard modeling of black-
box tracing by additionally accounting for pirate strategies that attempt to escape tracing
by purposedly rendering the transmitted content at lower quality (e.g. by dropping every
other frame from the decrypted video-clip, or skipping few seconds from the original
audio file). We also point out and resolve an issue in the black-box traitor tracing mech-
anism of both the previous schemes in this setting [16,10]. Our construction is based on
the decisional bilinear Diffie-Hellman assumption, and additionally provides the same
features of public traceability as (a repaired version of) [10], which is less efficient and
requires non-standard assumptions for bilinear groups.
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Abstract. We analyze the security of elastic block ciphers against key-recovery
attacks. An elastic version of a fixed-length block cipher is a variable-length block
cipher that supports any block size in the range of one to two times the length of
the original block. Our method for creating an elastic block cipher involves in-
serting the round function of the original cipher into a substitution-permutation
network. In this paper, we form a polynomial-time reduction between the elastic
and original versions of the cipher by exploiting the underlying network structure.
We prove that the elastic version of a cipher is secure against a given key-recovery
attack if the original cipher is secure against such an attack. Our analysis is based
on the general structure of elastic block ciphers (i.e., the network’s structure, the
composition methods between rounds in the network and the keying methodol-
ogy) and is independent of the specific cipher.

Keywords: Variable-length block ciphers, security analysis, reduction proof, key
recovery attacks.

1 Introduction

Elastic block ciphers are variable-length block ciphers created from existing block ci-
phers [5]. The elastic version of a block cipher supports any block size between one and
two times that of the original block length, and results in a computational workload for
encryption that is proportional to the actual block size. Our method for creating elastic
block ciphers consists of a substitution-permutation network that uses the round func-
tion from the existing fixed-length block cipher as a black box. Elastic block ciphers,
in turn, can be combined with modes of encryption to support encryption of any size
cleartext.

Traditionally, block ciphers are designed to support a specific block size, with the
security analysis and design optimized for the supported block size. For a variable-
length block cipher, a more general analysis is required to avoid evaluating the cipher
separately for each supported block length. Furthermore, for elastic block ciphers it
is preferable to be able to analyze the ciphers as a category as opposed to evaluating
each one individually against specific attacks to which the fixed-length versions have
previously been proven to be immune.
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We have extensively analyzed both the underlying structure used to create elastic
block ciphers and practical examples of elastic block ciphers. Our analysis has ranged
from proving that elastic block ciphers, in theory, provide variable length pseudoran-
dom permutations (PRPs) and strong PRPs to creating and analyzing concrete examples
[4]. In this work, we present our analysis of the security of elastic block ciphers against
practical attacks. These attacks typically attempt to recover the keys or the round keys
of the block cipher. Differential cryptanalysis [3,7], linear cryptanalysis [9] and ex-
haustive search methods are instances of such attacks (but other key-recovery attacks
exist [2,13]).

We prove, in general, that the elastic version of a block cipher is secure against
attacks that attempt to recover key bits if the original, fixed-length version of the cipher
is secure against such attacks. Our method is unique in that we show how to convert
such an attack on the elastic version directly into an attack on the original version with
a polynomially related time complexity. Unlike generic design methodologies, where
the component from which security is derived is a well defined black-box building
block [6], our proof requires identifying the presence of a fixed-length instance of the
block cipher embedded inside the elastic design even though it is the round function and
not the original block cipher in its entirety that is used as a black box. As a result of our
proof, if the original cipher is (assumed, shown heuristically, or proven to be) immune
to a certain type of attack (such as linear or differential cryptanalysis) then the elastic
version is also (respectively assumed, shown heuristically, or proven to be) immune to
the attack in the same sense (with polynomially related parameters that we concretely
calculate).

The use of the round function of the original block cipher as a black box in the
elastic version, together with the methods by which we compose rounds and schedule
key material, is what enables us to relate the security of the elastic version of a block
cipher directly to the security of the original cipher. Our general approach is moti-
vated by reduction-oriented proofs of security. Such proof techniques are not typical in
symmetric-key cryptography, especially in concrete designs (for a survey of proof tech-
niques in this area, see [12]:Chapter 4), and are more common in generic designs that
assume strong secure components (e.g., assuming a component is a random function or
a pseudorandom function [8]).

Our elastic block cipher design exploits existing components of a cipher to gain ef-
ficiency and avoids using the entire fixed-length cipher as a black-box (as was done in
earlier work, [1,11]). Thus, it may appear at first that the ability to perform a reduction-
based proof is lost. However, the methodology presented in this work demonstrates
that even concrete designs that use components of a cipher may resort to reduction-
like proof techniques if the components’ properties and the composition methods are
carefully chosen, even with respect to concrete key-recovery attacks as opposed to only
distinguishability attacks, which are more typical in investigations of a formal theoret-
ical nature. To the best of our knowledge, this type of methodology is new in this area.
While it is not common in block cipher design, we believe it will be a useful analysis
tool in settings that employ cipher components within extended contexts, and may also
be of independent interest.
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The remainder of the paper is organized as follows. Section 2 summarizes the con-
struction of elastic block ciphers. Section 3 defines the relationship between the security
of the elastic version of a block cipher against key recovery attacks to the security of
the original cipher against such attacks. Section 4 concludes the paper.

2 Elastic Block Cipher Review

2.1 Overview

We briefly review our method for creating elastic block ciphers [5]. The method con-
verts the encryption and decryption functions of any existing block cipher to accept
blocks of size b to 2b bits, where b is the block size of the original block cipher. The
general structure of an elastic block cipher is shown in Figure 1. An elastic version of
a block cipher is created by inserting the cycle of the original fixed-length block cipher
into the network structure to form the round function of the elastic version. In each
round the leftmost b bits are processed by the round function and the rightmost y bits
are omitted from the round function. Afterwards, the rightmost y bits are XORed with a
subset of the leftmost b bits and the results swapped. This swapping of bits may be omit-
ted after the last round. The number of rounds in the elastic version is set such that the
round function is applied to each bit position at least the same number of times as in the
fixed-length version. The elastic version also includes initial and end-of-round whiten-
ing, and an initial and final key-dependent permutation. The key-dependent permuta-
tions are present to prevent an attacker from knowing with a probability of 1 exactly
what y bits are omitted from the first application of the round function when encrypt-
ing or decrypting. Decryption is performed by applying the network in reverse with the
round function of G′ replaced by its inverse, specifically the inverse of the cycle in G.

We use the following notation from the definition of elastic block ciphers [5] through-
out the remainder of this paper.
Notation:

– G denotes any existing block cipher with a fixed-length block size that is structured
as a sequence of rounds. By default, any block cipher that is not structured as a
sequence of rounds is viewed as having a single round.

– A cycle in G refers to the point at which all b-bits of the block have been processed
by the round function of G. For example, if G is a Feistel network, a cycle is the
sequence of applying the round function ofG to the left and right halves of the b-bit
block. In AES [10], the round function is a cycle.

– r denotes the number of cycles in G.
– b denotes the block length of the input to G in bits.
– y is an integer in the range [0, b].
– G′ denotes the modified G with a (b+ y)-bit input for any valid value of y. G′ will

be referred to as the elastic version of G.
– r′ denotes the number of rounds in G′.
– The round function of G′ will refer to one entire cycle of G.
– The swap step will refer the step in which the rightmost y bits are XORed with y

bits from the leftmost b bits and the results swapped.
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Fig. 1. Elastic Block Cipher Structure

The elastic version of a block cipher requires a greater number of expanded key
bits than the original, fixed-length version. In practice, options for the key schedule
include using a stream cipher to generate all expanded key bits, applying the original
key schedule multiple times, or using the original key schedule for some expanded key
bits and a stream cipher or other algorithm for the additional key bits. We note that the
use of a stream cipher for the key schedule allows for a generic key schedule across
all elastic block ciphers and increases the pseudorandomness of the expanded key bits
when compared to existing key schedules, although in practice this incurs the cost of
a decrease in the rate of key expansion [4]. The acceptable relationships between the
expanded key bits of the elastic version and the original key bits are expressed in the
security analysis below.

3 Security Analysis

3.1 Overview

For any concrete block cipher used in practice, as opposed to a theoretical construction
of a pseudorandom permutation (PRP), the cipher cannot be proven secure in a formal
sense (is not proven to be a PRP or strong PRP) but rather is proven or shown under
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certain assumptions to be secure against known types of attacks. Thus, we can only do
the same for the elastic version of such a cipher. In order to provide a general under-
standing of the security of elastic block ciphers, we provide a method for reducing the
security of the elastic version to that of the original version, showing that a security
weakness in G′ implies a weakness in G. Our security analysis of G′ exploits the fact
that there is an instance of G embedded in G′ and is independent of the specific block
cipher used for G.

We prove that G′ is secure against any attack that attempts to recover the key or the
expanded-key bits if G is secure against the attack, under certain assumptions on the
independence of the expanded-key bits in G′. This is accomplished by showing how
to convert such an attack on G′ to an attack on G. We believe this result is important
because it implies that G′ does not have to be analyzed against any practical attack to
which G is immune (unless a more refined analysis than the reduction is required). Our
approach is novel because we show how to convert an attack on the variable-length
version of a block cipher directly into an attack on the fixed-length version of the block
cipher, and, in general, it points out at a direction of identifying embedded ciphers inside
ciphers when the design is not purely of a black box fashion.

Security against key recovery attacks does not by itself imply security (e.g., the
identity function which ignores the key is insecure while key recovery is impossible).
However, all concrete attacks against real ciphers (linear, differential, higher order dif-
ferential, impossible differential, related key attacks, etc.) attempt key or expanded-key
recovery and thus practical block ciphers should be secure against such attacks. We
note that if there is a relationship between the plaintext and ciphertext bits that does
not involve the key bits, this relationship would either manifest itself in the results of
statistical tests on whatever versions of the block cipher (original and/or elastic) for
which the relationship holds, and/or as algebraic equations relating the plaintext and
the ciphertext.

3.2 G Within G′

Before stating our theorem, we provide some preliminary analysis that assists us in
conveying the linkage between the original and elastic versions of a block cipher. For
simplification of terminology only, we will refer to the fixed-length block cipherG as if
the round function ofG is a cycle and omit using the term “cycle”. For anyG in which a
cycle involves multiple applications of the round function, such as in a Feistel network,
our analysis holds by referring to a cycle of G instead of the round function of G.

We first draw attention to the fact that the operations performed in G′ on the leftmost
b-bit positions in r consecutive rounds is an application ofG. This is depicted intuitively
in Figure 2. We note that we are concerned only with r consecutive rounds ofG′ and do
not include either the initial or final key-dependent permutation present in the definition
of elastic block ciphers. This relationship between G′ and G can be used to convert
an attack which finds the round keys for G′ to an attack which finds the round keys
for G. Let Grk denote G using round keys rk and let Gk

′ denote G′ using key k.
Let (p, c) be a b-bit (plaintext, ciphertext) pair, and let x and z each be of length y. ‖
denotes concatenation. If Gk

′(p ‖ x) = c ‖ z, a set of round keys, rk, for G such
that Grk(p) = c can be formed from the round keys and the round outputs in G′ by
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Fig. 2. G within G′

collapsing the end-of-round whitening and swap steps in G′ into a whitening step. The
leftmost b bits of the initial whitening inG′ are used as the initial whitening inG and the
rightmost y bits of the initial whitening in G′ are dropped. The resulting end-of-round
whitening key bits for G will vary in up to y positions across the (plaintext, ciphertext)
pairs when collapsing the steps from G′; however, it is possible to use these keys to
solve for the round keys of G.

The following claim shows that for any set of (plaintext, ciphertext) pairs encrypted
under sets of round keys in G′ where the rightmost y bits used for whitening in each
round may vary amongst the sets and all other key bits are identical amongst the sets,
there exists a corresponding set of (plaintext, ciphertext) pairs for G where the round
keys used in G′ for the round function and the leftmost b bits of each whitening step
are the same as those used in G, the plaintexts used in G are the leftmost b bits of the
plaintexts used in G′, and the ciphertexts for G are the leftmost b bits of output of the
rth round of G′ prior to the swap step.

Claim 1: LetG be a b-bit block cipher andG′ be its elastic version. Let {(pi, ci)} denote
a set of n (plaintext, ciphertext) pairs such that |pi| = |ci| = b. Let b+ y be the variable
block size for G′ where 0 ≤ y ≤ b. Let w be a y-bit constant. Let vi be a y bit string
that may vary per i, for i = 1 to n. Under the following assumptions regarding the key
schedules:

– The rightmost y bits of each whitening step in G′ can take on any value and are
independent of any other expanded-key bits within the round and in other rounds.

– There are no message-related expanded keys. Any expanded-key bits utilized in G
depend only on the key and do not vary across plaintext or ciphertext inputs.

– Any expanded-key bits used in the round function of the r consecutive rounds ofG′

can take on the same values as the expanded-key bits used in the round functions
of G.
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– If G contains initial and end-of-round whitening, any expanded-key bits used for
the leftmost b bits of each whitening step in r consecutive rounds of G′ can take on
the same values as the whitening bits in G.

if Gk(pi) = ci then there exists n sets of round keys for the first r rounds of G′ that are
consistent with inputs pi ‖ w producing ci ‖ vi as the output of the rth round prior to
the swap step at the end of the rth round, for i = 1 to n, such that the leftmost b bits
used for whitening in each round are identical across the n sets and any expanded-key
bits used internal to the round function are identical across the n sets.

Proof. Let rk = {rk0, rk1, ...rkr} be the set of round keys corresponding to key k for
G. rk0 denotes the key bits used for initial whitening. For each (pi, ci), form a set of
the first r round keys for G′ as follows: Pick a constant string, w, of y bits, such as a
string of 0′s. Let pi ‖ w be the input to G′. Let rki′ = {rki′0, rki′1, ...rki′r} denote
the round keys for G′ through the rth round for the pair (pi, ci). Set any bits in rki′j
used internal to the round function to be the same as the corresponding bits in rkj . Set
the leftmost b bits used for whitening in rki′j to the b bits used for whitening in rkj .
Set the rightmost y bits used for whitening in rki′j to be the same as the y bits left out
of the round function in round j of G′. This is illustrated in Figure 3. Notice that the
leftmost b bits used for whitening in each round are identical across the n sets of round
keys formed, and any bits used internal to the round function are identical across the
n sets; specifically, they correspond to rk in each case, and the rightmost y bits used
in each whitening step differ based on (pi, ci) across the n sets. The case in which G
does not contain whitening steps corresponds to using 0’s for the leftmost b bits of each
whitening step in G′.

The operations of G′ on the leftmost b bits of rounds 1 through round r, prior to the
last swap, are identical to the operations in Gk(pi) because the swap step in G′ results

Fig. 3. Converted Key Unchanged in b Whitening Bits
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in XORing y bits of a round function’s output with y 0′s. Thus, the leftmost b bits in
the output of the rth round prior to the swap step is ci. Therefore, for i = 1 to n there
exists a set of round keys, rki′ for G′

rki′ such that G′(pi) produces ci as the leftmost b
bits in the rth round prior to the swap step, thus proving the claim.

3.3 Reduction Between the Original and Elastic Versions of a Cipher

We use the fact that an instance of G is embedded in G′ to create a reduction fromG′ to
G. As a result of this reduction, an attack againstG′ that allows an attacker to determine
some of the round keys implies an attack against G that is polynomially related in
resources to the attack on G′. Assuming that G itself is resistant to such attacks, we
conclude that G′ is also resistant to such attacks. We note that if an attack finds the key
as opposed to the expanded-key bits (the round keys) then the attacker can apply the key
schedule to the key to obtain the round keys. Therefore, in our analysis, we view any
key recovery attack as providing the round keys to the attacker. The reduction requires
a set of (plaintext, ciphertext) pairs. This is not considered a limiting factor because
in most types of attacks, whether they are known plaintext, chosen plaintext, adaptive
chosen plaintext, chosen ciphertext etc., the attacker acquires a set of such pairs.

In our analysis, we consider G′ without the initial and final key-dependent permu-
tations. This allows us to focus on the core components of the elastic block cipher al-
gorithm. If present, the initial and final permutations only serve to increase the security
of G′ since they prevent an attacker from knowing with probability one which bits are
omitted from the first application of the round function when encrypting or decrypting.
Furthermore, since these permutations are added steps (as opposed to modifications to
components of G) using key material that is independent of the round and whitening
key bits, they do not impact our analysis.

Theorem 1. Given a fixed-length block cipher, G, that works on b-bit blocks and its
elastic version, G′, that works on (b+ y)-bit blocks, where 0 ≤ y ≤ b, if there exists an
attack,A′

G′ , on G′ that allows the round keys to be determined for r consecutive rounds
of G′ using polynomial (in b and/or r) time and memory, then there exists an attack on
G with r rounds that finds the round keys for G and that uses polynomial (in b and/or
r) many resources as A′

G′ , assuming:

– There are no message-related expanded keys. Any expanded-key bits utilized in G
depend only on the key and do not vary across plaintext or ciphertext inputs.

– An attack on r′ rounds of G′ implies a reduced-round attack on r rounds of G′ for
r ≤ r′.

– A′
G′ finds all possible sets of round keys, if more than one set exists.

– Any expanded-key bits used in the round function of r consecutive rounds ofG′ can
take on the same values as the expanded-key bits used in the round functions of G.

– If G contains initial and end-of-round whitening, any expanded-key bits used for
the leftmost b bits of each whitening step in r consecutive rounds of G′ can take on
the same values as the whitening bits in G.

Before beginning the proof, we have a few comments on the theorem and assumptions.
We first note that for an attack on G′ to be computationally feasible, it must involve
< 2b (plaintext, ciphertext) pairs because otherwise an exhaustive search on G would
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be possible, implying G is insecure against practical attacks. The first assumption is
typical of existing block ciphers and is true of the elastic versions of block ciphers. The
second assumption is true of block ciphers used in practice. The last two assumptions
mean that the key schedule of G′ is defined such that a subset of the expanded-key bits
can have the same values as if they were generated by the key schedule of G. These
assumptions are easily satisfied in practice by using the key schedule of G to generate a
subset of the round key bits and a separate algorithm to generate the expanded-key bits
required in G′ for the additional r′ − r rounds and any whitening present in G′ that is
not present in G. Another option is if the key schedule of G′ generates pseudorandom
expanded-key bits such that it is possible the expanded-key bits for the round function
and leftmost b bits of whitening in r consecutive rounds can take on the same values
generated by the key schedule of G. In practice, given an expanded-key, it is feasible to
check if the expanded-key adheres to a specific block cipher’s key schedule. A subset
of the expanded-key bits being tested can be inserted into the key schedule to generate
additional key bits which can be checked against the bits in the value being tested.

The theorem holds by default for the case when y = 0, since G′ is just G (with the
possible addition of whitening which can be set to 0’s when applying the attack if G
does not contain whitening). We viewG as having whitening steps in the proof to Theo-
rem 1. This is not an issue for the following reason. If the attack on G′ involves solving
for the round key bits directly and allows the bits used in the whitening steps to be set
to 0 for bit positions not swapped and to 0 or 1, as necessary, for bit positions swapped,
then the whitening on the leftmost b bits is equivalent to XORing with 0, which is the
same as having no whitening in G. If the attack on G′ finds all possible keys or sets
of round keys, the attack must find the key(s) or set(s) of round keys corresponding
to round keys that are equivalent to XORing with 0. Setting a subset of bits in each
whitening step in G′ to 0’s is equivalent to using a weaker version of G′. Any attack
that works on G′ will work on the weaker version. This is merely the case where the
attacker knows certain bits of each whitening step are 0’s.

We note that Theorem 1 only states that an attack on G′ can be converted to an
attack on G and not the reverse. This is because, in general, the claim that an attack
on G can be converted into an attack on G′ does not hold. Consider the case when G
contains the initial and end-of-round whitening steps. When y = 0, G′ is G with the
initial and final key-dependent permutations added and the key schedule replaced (such
as by a stream cipher). If the attack on G is due to the original key schedule, the attack
does not necessarily hold if the key schedule is changed to generate pseudorandom bits
when creating G′. For any attack not due to the key schedule, in order to claim that an
attack on G implies an attack on G′, it is necessary that the attack on G be such that the
addition of the initial and final key-dependent permutations, the addition or expansion
of the whitening steps and the addition of the swap steps do not result in the attack
becoming inapplicable or computationally infeasible. In general, the conversion of an
attack from G′ to G works because there is a decrease in the complexity of the block
cipher being attacked when going fromG′ toG; whereas, the reverse is not true because
there is an increase in the complexity of the block cipher when converting G to G′.

To prove Theorem 1, we must show for any value of y, where 0 ≤ y ≤ b, that if
an attack exists on G′ it can be converted into an attack on G using polynomial time
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and memory. We define the steps for converting a round-key recovery attack on G′ to
an attack on G. We describe two ways of performing the conversion. The first method
works for any value of y, where 0 ≤ y ≤ b. The second method is is applicable for
values of y satisfying r(y − 2) < b, where r is the number of rounds in the original
cipher. We include the second method because it requires fewer computations than the
first method and thus is useful for small values of y. The methods treat whitening key
bits as if they are pseudorandom in that the whitening key bits can take on any value. In
G, if there is a relationship amongst the whitening key bits and/or between whitening
key bits and key material used within the round function due to the key schedule of G,
such keys will be a subset of all the possible sets of round keys found using the attack
onG′. Then the set of round keys that satisfies the key schedule of G can be determined
by checking which of the potential keys corresponds to the key schedule. If the number
of potential sets of round keys found by the attack on G′ is large enough such that it
is computationally infeasible to determine which ones adhere to the key schedule of
G, then the attack on G′ is not computationally feasible. This is because the number
of potential sets of round keys it finds for a set of (plaintext, ciphertext) pairs will also
be large enough such that it is computationally infeasible for an attacker to determine
which set to use to decrypt additional ciphertexts.

When we refer to converting the round keys of G′ into round keys for G, we mean
the following: In round j of G′, let bjl denote the lth bit of the b bits output from the
round function prior to the end-of-round whitening. Let kwjl denote the end-of-round
whitening key bit applied to bjl. If bjl is involved in the swap step at the end of round
j, let yjh denote the bit from the rightmost y bits with which bjl is swapped and let
kwjh denote the whitening key bit applied to yjh. Set the lth whitening bit in round j
of G to kwjl ⊕ kwjh ⊕ yjh when j ≥ 2. When j = 1, the lth whitening bit is set to
kw1l⊕kw1h⊕y1h⊕kw0h in order to include the initial whitening on the rightmost y bits
in the conversion. Set all other key bits used inG (both whitening and any internal to the
round function) to be identical to the key bits used in G′. We refer to the initial whiten-
ing as round 0. The initial whitening forG′ is converted to initial whitening forG by us-
ing the leftmost b expanded-key bits of the initial whitening as the initial whitening inG.

Proof of Theorem I: First Method. We describe here a method for converting the
attack on G′ to an attack on G. Without loss of generality, we use the first r rounds of
G′ as the r consecutive rounds for which the round keys are found. The conversion is
presented in terms of solving for the round keys from the initial whitening to round r,
but may also be performed by working from round r back to the initial whitening or by
using any consecutive r rounds with whitening applied before the first round as long as
the plaintext for G is the leftmost b bits of input to the r rounds and the corresponding
ciphertext from G is the leftmost b bits of the output of the r rounds.

This attack runs in quadratic time in the number of rounds of G. The attack, A′
G′ , on

G′ is used to solve for round keys 0 and 1 for G, then repeatedly solves for one round
key ofG at a time, using the output of one round ofG as partial input to a reduced round
version of G′, running the attack on G′ and converting the 1st round key of G′ to the
round key for the next round of G. By the second condition in Theorem 1, if an attack
on G′ with r′ rounds exists, then a reduced round attack on G′ exists for any number of
rounds < r′.
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Let P be a set of plaintexts and C be a set of ciphertexts. We use the notation
{(P,C)} to indicate a set of (plaintext,ciphertext) pairs of the form (pi, ci) with pi ∈ P
and ci ∈ C. Given a set {(P ∗, C∗)} = {(pi∗, ci∗)} of n (plaintext, ciphertext) pairs for
G, create a set {(P,C)} = {(pi∗ ‖ 0, ci∗ ‖ vir)} of n (plaintext, ciphertext) pairs for
an r-round version of G′. Note: we only require that the y bits appended to each pi∗

when forming {(P,C)} be a constant; we choose to use 0. The vir values appended
to the ci∗ values are arbitrary and do not need to be identical. The r subscript in vir
denotes the number of rounds. Our method runs reduced round attacks on G′ and the
vir’s can vary each time. Solve G′ for round keys 0 and 1. By the pseudorandomness
of the round keys, sets of round keys exist that correspond to {(P,C)} and which are
identical in at least the initial whitening and first round (the round keys across all n
pairs may be identical in additional rounds, but we are only concerned with the initial
whitening and first round at this point in the process). Denote these as rk′0 and rk′1.
Use the leftmost b bits of rk′0 as round key 0, rk0, for G. Since the rightmost y bits are
identical across all inputs to G′, when rk′1 is converted to a round key for G, the result
will be the same across all n elements of {(P ∗, C∗)}. Use the converted round key as
round key 1, rk1, for G. For each pi∗, apply the initial whitening and first round of G
using the two converted round keys. Let pi1 denote the output of the first round of G
for i = 1 to n. Using a reduced round version of G′ with r − 1 rounds and the initial
whitening removed, set {(P,C)} = {(pi1 ‖ 0, ci∗ ‖ vir−1)} and solve for the first
round key of G′. As before, convert the resulting round key for the first round of G′ to
a round key for G, but this time use the converted key as the second round key for G.
Repeat the process for the remaining rounds of G, each time using the outputs of the
last round of G for which the round key has been determined as the inputs to G′ and
reducing the number of rounds in G′ by 1, to sequentially find the round keys for G.

This attack involves applying each round of G to n inputs for a total of rn rounds
of G. n(r+1)r

2 rounds of G′ are computed in the worst case if A′
G′ requires knowing

the output of each round of the reduced round version of G′ to find the first round key.
r applications of A′

G′ are needed on the reduced round versions of G′. Let tA denote
the time to run A′

G′ . Let kst be the time to check that an expanded-key found by A′
G′

adheres to the key schedule of G. The time to attack G is O(nr2 + rtA + kst).

In summary, the attack on G can be written as:
Input {(P ∗, C∗)} = {(pi∗, ci∗) for i = 1 to n}.
Create {(P,C)} = {(pi∗ ‖ 0, ci∗ ‖ vir) for i = 1 to n} for a r-round version of G′,

where the vi′s are arbitrary.
Using A′

G′ , solve a r-round version of G′ for rk′0 and rk′1.
Convert rk′0 to rk0 and rk′1 to rk1.
Set pi1 = first round output of G using rk0 and rk1, for i = 1 to n.
For j = 1 to r − 1 {

{(P,C)} = {(pij ‖ 0, ci∗ ‖ vir−j) for i = 1 to n}.
Solve a r − j reduced round version of G′ for the first round key, rk′1.
Convert rk′1 to form rkj+1.
pij+1 = output of round j + 1 of G on pij using rkj+1, for i = 1 to n.

}



100 D.L. Cook, M. Yung, and A.D. Keromytis

Proof of Theorem I: Second Method. Our second method for proving Theorem 1
requires fewer computations than the first method, but provides round keys for a smaller
set of (plaintext, ciphertext) pairs. The attack works as follows: Assume there exists a
known (plaintext, ciphertext) pair attack on G′ which produces the round keys either
by finding the original key and then expanding it, or by finding the round keys directly.
Using round keys for rounds 0 to r of G′, convert the round keys into round keys for
G one round at a time. For each round, extract the largest set of (plaintext, ciphertext)
pairs used in the attack on G′ that have the same converted round key. If there are nj

(plaintext, ciphertext) pairs involved at round j, there will be at least nj

2y pairs remaining
for which the round keys are consistent after round j. The end result is a set of round
keys for G that are consistent with a set of n

2y(r−2) b-bit (plaintext, ciphertext) pairs for
G. We then describe how to take a set of (plaintext, ciphertext) pairs for G, convert
them into a set of (plaintext, ciphertext) pairs for G′ in order to run the attack on G′ to
find the round keys for G.

Let {(P,C)} = {(pi ‖ xi, ci ‖ zi)}, for i = 1 to n, denote a set of n known (b+ y)-
bit (plaintext, ciphertext) pairs for G′, where |pi| = |ci| = b and |xi| = |zi| = y.

Let AG′ be an attack on G′ that finds the key(s) corresponding to {(P,C)} in time
less than an exhaustive search for the key. Let m denote the number of keys found. In
practice, only one key should be found for any set of (plaintext, ciphertext) pairs.m > 1
only impacts the time to perform the attack and not the method itself. Without loss of
generality, it is assumed that the keys are available in expanded form.

Let k be one of the m keys found by AG′ and let ek be the expanded-key bits corre-
sponding to k. Let ˆeki be the expanded-key bits for G resulting from the conversion of
ek when applied to the ith element of {(P,C)}. Let Rint denote any bits of ek utilized
within the round function. The values found for the bits of Rint will be the same for G′

and G (the same in ek and every ˆeki). For each i, the bits of ˆeki corresponding to the
initial whitening in G (round 0) will be the leftmost b bits of the initial whitening bits
from ek.

Let {(P,U)} = {(pi||xi, ui||vi)} such that ui||vi is the output of the rth round of
G′ prior to the swap step, where |ui| = b and |vi| = y.

When the round keys from ek are converted to those for ˆeki, at most y bits change in
the leftmost b bits of each end-of-round whitening step. Thus, the resulting round keys
for round q, 1 ≤ q ≤ r can be divided for each of the y impacted bits into those that have
a 0 in the affected bit and those that have a 1 in the affected bit. For q = 1 to r, define
Srndq as the maximum-sized set of ˆeki values from Srndq−1 that have identical bits for

round q, where Srnd0 = { ˆeki, for i = 1 to n}. Let {(P,U)rndq} be the corresponding
elements of {(P,U)}. When forming {(P,U)rndq}, at least (2−y) ∗ |{(P,U)rndq−1}|
of the elements from {(P,U)rndq−1} are included. There is no swap step after the rth

round so |Srndr | = |Srndr−1 |. Across r rounds, the number of (plaintext, ciphertext)
pairs are reduced at most r − 1 times.

To illustrate how the sets Srndq and {(P,U)rndq} are created, consider the example
shown in Figure 4 where b = 4, y = 2, and the leftmost 2 bits are swapped with
the y bits in the swap step. The round number is q and {(P,U)rndq−1} contains three
(plaintext, ciphertext) pairs. Suppose the outputs of the round function in the qth of G′

are 100101, 110011 and 111111 and the whitening bits in the qth round are 011010.
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1001   01 1100   11 1111   11

KB KB

KB = 0110
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KBKY KY KY

1111   00 1010   10 1001   10

1111   11 0010   10 0001   10

1001 1100 1111

0110 1110

1111 0010 0001

1110

converted

key bits
converted

key bits

converted

key bits

Fig. 4. Forming Srndq

The whitening bits of the converted round keys corresponding to the three cases are
0110, 1110 and 1110. Since 1110 occurs in the majority of the cases, set the qth round
key ofG to 1110. Srndq contains the elements of Srndq−1 that produced 1110 as the qth

round key, and {(P,U)rndq} contains the second and third (plaintext, ciphertext) pairs
from {(P,U)rndq−1}.

Let rk be the contents of Srndr . rk is the expanded key bits for G. Let {(P,C)G} =
{(pi, ci)|(pi ‖ yi, ui ‖ vi) ∈ {(P,U)rndr}}. |{(P,C)G}| ≥ n/2y(r−1). {(P,C)G} is
a set of (plaintext, ciphertext) pairs for which Grk(pi) = ci ∀ (pi, ci) ∈ {(P,C)G}.

So far we have defined a method that produces a set of at least n
2y(r−1) (plaintext, ci-

phertext) pairs that are consistent with the round keys. This lower bound on the number
of (plaintext, ciphertext) pairs can be slightly increased to n

2y(r−2) by using (b + y)-bit
plaintexts that are the same in the rightmost y bits (which we did by setting these bits to
0). This will result in |Srnd1 | = n. Since we also have |Srndr | = |Srndr−1 |, the set of
(plaintext, ciphertext) pairs is not reduced in the first and rth rounds. Then the number
of (plaintext, ciphertext) pairs produced forG that are consistent with the round keys for
G is ≥ n

2y(r−2) . The number of possible plaintexts for G is 2b; therefore, it is necessary
for y(r − 2) < b to use this method.

To perform the attack on G when given a set of (plaintext, ciphertext) pairs for G,
convert the pairs into a set of (plaintext, ciphertext) pairs for G′ and find the round keys
for G′, and then for G as follows: Given a set {(P ∗, C∗)} = {(pi∗, ci∗)} for i = 1
to n known (plaintext, ciphertext) pairs for G, create the set {(P,C)} of (plaintext,
ciphertext) pairs to use in the attack on an r-round version of G′ by setting pi ‖ xi =
pi∗ ‖ 0 and ci ‖ zi = ci∗ ‖ zi, for i = 1 to n. For the set of (P,C) pairs created,
{(P,U)} = {(pi∗ ‖ 0, ci∗ ‖ zi)}. Apply the attack on G′ to solve for the round keys
of G′ then produce the sets {(P,U)rndr} and Srndr . The round keys in Srndr will be
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consistent with the (plaintext, ciphertext) pairs in {(P,U)rndr}. A set of round keys
that adheres to the key schedule of G will be found by Claim 1 and the assumption that
the attack on G′ finds all possible sets of round keys.

Let tr be the time to run r rounds of G′ and tA be the time to run AG′ . Recall that
m is the number of keys (sets of round keys) found by A′

G′ . In the case of obtaining at
least one set {(P,U)rndr} of size ≥ n

2y(r−2) , the time required beyond tA consists of
nmtr time to obtain the outputs of the first r rounds for each {(P,U)}, O(nmr) time
to perform the conversion of the round keys from G′ to round keys for G and O(nmr)
time to form the Srndr sets. Let kst be the time to check that an expanded-key adheres
to the key schedule of G. Thus, the additional time required to attack G (beyond the
time required to attack G′) is O(nm(r+ tr)+mkst). The only unknown value is m. If
m is large enough, to the extent that it approaches the average number of keys to test in
a brute force attack on G′, then this contradicts the assumption that an efficient attack
exists on G′ because the attacker is left with a large set of potential keys for decrypting
additional ciphertexts.

4 Conclusion

We have proven that the elastic version of a block cipher is secure against any practical
attack that attempts to recover key or expanded-key bits if the original cipher is secure
against the attack. This eliminates the need to analyze an elastic version of a block
cipher against these types of attacks if the original cipher is secure against such attacks
(unless one is interested in improving the concrete work factors and probabilities of
success). Our result follows from the network structure used in creating elastic block
ciphers and the fact that the round function of the original fixed-length block cipher
is used as a black box when forming its elastic version. We note that while reduction-
based proofs of security are a cornerstone of cryptographic analysis, they are typical
when complete components are used as sub-components in a larger design and used
in a black box fashion. We are not aware of the use of such techniques in the case of
concrete block cipher designs.
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Abstract. This paper1 reports impossible-differential (ID) attacks on
reduced-round versions of the Rijndael cipher with text blocks larger than
128 bits. These attacks follow the framework of the attacks by Biham-
Keller and Cheon et al. on the AES, and reach up to seven rounds of large-
block Rijndael variants. Even though these ciphers are not standardized
as FIPS, like the AES, it is important to evaluate the security of the other
Rijndael versions since they provide larger internal states when used as
primitives for the construction of stream ciphers and hash functions. The
main contributions of this paper are longer ID distinguishers found for
large-block Rijndael versions, compared to the ones used for the AES.

Keywords: Impossible differential cryptanalysis, information security.

1 Introduction

Rijndael is a Substitution Permutation Network (SPN) block cipher designed
by Joan Daemen and Vincent Rijmen for the AES Development Process [1,9],
initiated by the National Institute of Standards and Technology (NIST) in the
USA in 1997. In Rijndael, both the text block and the key sizes can range from
128 up to 256 bits in steps of 32 bits [10, p.42]. Rijndael is an iterated cipher.
The number of rounds, Nr, depends on the text block and the key sizes, Nk, in
steps of 32 bits. There are 25 instances of Rijndael [10,18], for all combinations
of key and text block sizes. The 128-bit block version of Rijndael, with a key of
128, 192 or 256 bits, is officially known as the AES [12]. We denote by Rijndael-b,
with b ∈ {160, 192, 224, 256}, the large-block Rijndael versions with the suffix
indicating the text block size in bits. In [1], the blocks for text, key, subkeys
and intermediate data are represented compactly by a 4 × Nb state matrix of
bytes, where Nb is the number of 32-bit words in a block. For example, the state
matrix for a 4t-byte text block, A = (a0, a1, a2, a3, a4, . . . , a4t−1), is denoted

State =

⎛⎜⎜⎝
a0 a4 . . . a4t−4

a1 a5 . . . a4t−3

a2 a6 . . . a4t−2

a3 a7 . . . a4t−1

⎞⎟⎟⎠ , (1)

with bytes inserted columnwise. In AES, t = 4.
1 Research funded by FAPESP under contract number 2005/02102-9.

J. Garay et al. (Eds.): ISC 2007, LNCS 4779, pp. 104–117, 2007.
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Each (full) round in Rijndael contains four layers: SubBytes (denoted SB),
ShiftRows (SR), MixColumns (MC) and AddRoundKey (AKi), where 0 ≤ i ≤
Nr is the round number. We briefly explain each layer. More details can be found
in [9,10]. SB is the nonlinear layer and provides the confusion [26] property in
Rijndael. SB consists of the parallel application of a fixed 8 × 8-bit S-box to
each byte of the state. Both SR and MC provide diffusion [26] in Rijndael. SR
consists of left-rotating the rows of the state by fixed offsets. MC consists of a
linear transformation over the columns of the state, using a 4× 4 MDS matrix1.
AKi consists of the exclusive-or combination of the i-th round subkey with the
intermediate cipher state. AKi is the only key-dependent transformation in a
round. One (full) round of Rijndael, operating on a text block X , can be denoted
F (X) = AKi◦ MC ◦ SR ◦ SB (X) = AKi(MC(SR(SB(X)))). There is a pre-
whitening layer, consisting of AK0 only, before the first round. Moreover, the last
round does not contain MC.

This paper applies the impossible differential (ID) technique [3,15] to up to
seven rounds of Rijndael with text blocks larger than 128 bits, complementing the
analysis in [6,8]. Even though these Rijndael variants have not been standardized
in a FIPS, like the AES, some of them have attracted attention. For example,
Rijndael-256 had its software performance [23, p.55] evaluated by the NESSIE
Project [22], but there was no security analyses. We look at filling this gap, since
block ciphers are pervasive cryptographic primitives, suitable as a building block
in stream ciphers, hash functions and MAC constructions [20]. Weaknesses in the
former may have negative consequences for the latter. Examples of applications
of block ciphers include the OFB, CFB and CTR modes of operation (with
security related to the size of the internal cipher state), and the Davies-Meyer,
Miyaguchi-Preneel and Matyas-Meyer-Oseas constructions [20, p.340], where the
hash size depends on the block size of the underlying cipher. The larger block
sizes of Rijndael are in line with the new SHA-2 hash functions (SHA-224, SHA-
256, SHA-384, SHA-512) [11].

Typical ID distinguishers, following the miss-in-the-middle technique, are
constructed from two truncated differentials, one of them propagating in the
encryption direction and the other in the decryption direction. Thus, ID distin-
guishers exploit both ends of a cipher at the same time, like boomerang [7] and
differential-linear [17] distinguishers. Moreover, complete diffusion takes more
rounds for large-block Rijndael variants. Consequently, ID distinguishers can be
longer for increasing block sizes, and therefore, allowing attacks on a larger num-
ber of rounds. All of these facts motivate our security evaluation of large-block
Rijndael.

This paper is organized as follows. Sect. 2 gives a brief overview of the im-
possible differential technique. Sect. 3 describes ID distinguishers and attacks on
reduced-round versions of Rijndael-160. Sect. 4 describes ID distinguishers and
attacks on versions of Rijndael-192. Sect. 5 describes ID distinguishers and at-
tacks on versions of Rijndael-224. Sect. 6 describes ID distinguishers and attacks
on versions of Rijndael-256. Sect. 7 concludes the paper.

1 Maximum Distance Separable [1].
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2 Impossible Differential Attacks

Distinguishers are fundamental tools in cryptanalysis, and can be used either
to distinguish a cipher from a random permutation, or in key-recovery attacks.
Informally, distinguishers help detect nonrandom behaviors of a given cipher,
such as nonuniform distribution of text difference patterns (in DC, ID [15]
and boomerang [7] analyses), biased linear relations (in LC [19]) or algebraic
properties (algebraic and interpolation [14] analyses). Distinguishers can be key-
independent, if they hold for any key value, or key-dependent, if they hold only
for particular key values, called weak keys. Unlike the differential and linear tech-
niques, which look for events such as text patterns or statistical correlations of
high probability (or high bias), the ID method looks for events that never happen.
It is an open problem how to use ID distinguishers that hold with a negligibly
small (but nonzero) probability, that is, probabilistic ID distinguishers.

The impossible differential (ID) technique is a chosen-plaintext (CP) attack
formerly proposed in [15] against the DEAL block cipher, and further applied
to Skipjack [3], IDEA [4], Khufu [4], the AES [6] and many other ciphers. ID
distinguishers currently reported in the literature use the miss-in-the-middle
technique [3]. This technique requires two differentials (∇ and Δ) both holding
with certainty (probability one). In ∇, the difference patterns propagate in the
encryption direction. In Δ, the difference patterns propagate in the decryption
direction. Both differentials are constructed such that the output difference pat-
tern of ∇ is incompatible with the input difference pattern of Δ, in the sense
that the output difference of ∇ cannot cause the output difference of Δ (and
vice-versa). This contradiction explains the term miss-in-the-middle, and it is de-
noted ∇ �→ Δ. Symmetrically, Δ �→ ∇ (the latter works in a chosen-ciphertext
(CC) setting).

In byte-oriented ciphers such as Rijndael (AES), it is typical to use trun-
cated differentials [16] to construct Δ and ∇, because truncated difference pat-
terns hold with certainty. Moreover, they are also independent of the particular
S-boxes used in the cipher. In truncated differentials, one only distinguishes be-
tween zero and nonzero differences, namely, the exact value of the nonzero differ-
ence is irrelevant. For bytewise difference patterns, as in Rijndael, a nonzero byte
difference will be denoted ‘δ’. In contrast, a zero byte difference will be denoted
simply ‘0’. Notice that although δ is used throughout the distinguisher, it does
not mean that all these bytes contain the same difference value. It only means
that the difference value in nonzero. The difference operator used for Rijndael
is exclusive-or.

Differential and linear distinguishers (among others) recognize the correct key
by comparing difference patterns or linear relations that most closely satisfy the
distinguishers. ID distinguishers operate the other way around. The keys that
actually satisfy the ID distinguisher are wrong values, and the (single) key value
not suggested is the correct one.

ID distinguishers in this paper are independent of the key schedule algorithm,
and of weak-key or weak-subkey assumptions. Even though modern variants
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of the impossible differential attacks on the AES [5,13,27] operate under related-
key assumptions, the same technique cannot be applied to the other Rijndael
variants, because no key schedule has been officially defined for the latter [25].
Furthermore, in all attacks we assume the user key size equals the block size.

3 ID Distinguisher for Rijndael-160

An example distinguisher for 4-round Rijndael-160 is described in (2) in which
the ∇ truncated differential covers AK0 until MC of the third round. The Δ
truncated differential covers AK4 up until MC of the third round. These two
differentials are incompatible because of the pattern of three nonzero byte dif-
ferences in the leftmost column of the state before the MC layer of the third
round, and the pattern of four zero byte differences in the same column after
the MC layer. Since the branch number of the MC matrix is five [9,10], these
difference patterns are contradictory. Difference propagation is denoted by the
symbol →, and means that the difference pattern on the left-hand side causes
the difference pattern on the right-hand side.

⎛⎜⎝ δ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎠ MC◦SR◦SB◦AK0→

⎛⎜⎝ δ 0 0 0 0
δ 0 0 0 0
δ 0 0 0 0
δ 0 0 0 0

⎞⎟⎠ SR◦SB◦AK1→

⎛⎜⎝ δ 0 0 0 0
0 0 0 0 δ
0 0 0 δ 0
0 0 δ 0 0

⎞⎟⎠ SB◦AK2◦MC→

⎛⎜⎝ δ 0 δ δ δ
δ 0 δ δ δ
δ 0 δ δ δ
δ 0 δ δ δ

⎞⎟⎠ SR→

⎛⎜⎝ δ 0 δ δ δ
0 δ δ δ δ
δ δ δ δ 0
δ δ δ 0 δ

⎞⎟⎠ MC

�→

⎛⎜⎝ 0 δ δ δ δ
0 δ δ δ δ
0 δ δ δ δ
0 δ δ δ δ

⎞⎟⎠
AK

−1
3 ◦SB−1

←

⎛⎜⎝ 0 δ δ δ δ
0 δ δ δ δ
0 δ δ δ δ
0 δ δ δ δ

⎞⎟⎠ SR−1◦AK
−1
4←

⎛⎜⎝ 0 δ δ δ δ
δ δ δ δ 0
δ δ δ 0 δ
δ δ 0 δ δ

⎞⎟⎠ (2)

Distinguisher (2) belongs to a set of related distinguishers, all of which share
the same input difference pattern, the same number of rounds, and the same
number of zero output byte differences, but the precise output difference pat-
tern changes. For example, (2) contains zero byte differences in the ciphertext
positions (0,11,14,17) of the state matrix (1), but other ciphertext difference
patterns also cause contradiction. These patterns contain zero byte differences
in ciphertext positions (1,4,15,18), (2,5,8,19), (3,6,9,12) or (7,10,13,16). Thus,
all of these ciphertext byte positions are forbidden because all of them lead to a
contradiction.

There are many different ID distinguishers. But, some aspects make a dis-
tinguisher significantly more useful for a effective attack. Primarily, the number
of nonzero input byte differences to ∇ is related to the total amount of plain-
text pairs that can be generated and processed (with m texts one can make
m(m − 1)/2 text pairs). This number might not be too large, otherwise, the
attack may require too many encryptions. On the other hand, it should also not
be too small, otherwise, no right pairs (text pairs that follow the ID distinguisher
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patterns) will survive filtration by the ciphertext difference pattern. Further,
the number of zero ciphertext byte differences indicates the expected number of
pairs that may satisfy the ciphertext difference. The more zero ciphertext byte
differences, the larger the number of filtered pairs. Ideally, this number shall be
small.

3.1 Attack on 5-Round Rijndael-160

Distinguisher (2) can be used to recover AK0 piecewise in an attack on 5-round
Rijndael-160. The distinguisher is placed in the last four rounds. The attack
works as follows:

(i) create a pool of 232 plaintexts Pi = (pi
0, pi

1, . . ., pi
19), 0 ≤ i < 232, such

that (pi
0, p

i
5, p

i
10, p

i
15) range over all 32-bit values, while the remaining

bytes assume arbitrary constant values. Encrypt this pool across 5-round
Rijndael-160, and obtain a corresponding ciphertext pool Ci = (ci0, . . .,
ci19);

(ii) for each pair of ciphertexts (Ci, Cj), i �= j, such that the byte differences
at positions (0,11,14,17) of the state (1) are zero, guess 32 bits of AK0

in positions (0,5,10,15) and decrypt the first round of (Pi, Pj) up to the
leftmost column of the first MC layer. If only one byte difference is nonzero
in this column, then the guessed 32-bit subkey is wrong;

(iii) output the (only) 32-bit subkey value that was not eliminated in (ii).

Step (i) creates a pool of 232 ciphertext Ci, and a total of 232(232 − 1)/2 ≈ 263

pairs (Ci, Cj) in (ii). The forbidden patterns in Ci ⊕ Cj , include the four zero
byte differences in positions (0,11,14,17), (1,4,15,18), (2,5,8,19), (3,6,9,12) and
(7,10,13,16) of the state matrix (1). Thus, the expected number of ciphertext
pairs that satisfy any of these forbidden patterns is 263

5·(28)4 ≈ 229. So, we expect
to test about 229 pairs in step (ii). Each 32-bit subkey candidate that satisfies
step (ii) lead to a column of the state with three zero byte differences. Thus, one
expects that 232 · (2−8)3 = 28 wrong subkey values are suggested per pair.

After one plaintext pool is processed, the expected number of wrong subkeys
remaining is 232(1 − 28

232 )2
29

= 232(1 − 2−24)2
29 ≈ 232(e−1)2

5
= 232

e32 < 1, so only
the correct subkey value remains.

The complexity of step (i) is 232 5-round encryptions. In step (ii), each pair is
partially decrypted for 232 subkey candidates, which is equivalent to 232 · 229 =
261 one-round decryptions. In order to recover the full AK0, the same procedure
must be repeated five times for each 32-bit piece of AK0. Namely, (2) has nonzero
(plaintext) byte differences in position 0. To recover the remaining 128 user key
bits, we simply repeat the attack, but using distinguishers for which the nonzero
(plaintext) byte is in position 4, 8, 12 or 16. Thus, the total effort is 5·261/5 = 261

5-round computations. The data complexity is 5 · 232 ≈ 234.3 CP. The memory
required include storage of 232 ciphertexts, and about 232 bits for keeping track
of the wrong subkey candidates.
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Since this attack recovers AK0 (which is supposed to be the user key) there are
no savings in attack complexity by exploiting potential redundancies in the key
schedule of the cipher. This is the motivation for recoverying AK0 and not AK5.

An interesting question is: why does the correct subkey is not filtered by the
ID distinguisher? In the given key-recovery attack, the wrong subkeys do not
effectively decrypt the first round. Only the correct subkey can do it. Therefore,
in the latter, what remains (after decryption) is the ID distinguisher itself, that
can never be satisfied (in the case of a single active difference byte in a column
of the state); if there is more than one active difference byte in a column, the
distinguisher is definitely not satisfied at all. In the former, the wrong subkeys
not only do not decrypt the first round, but also effectively add a round on top
of the first round thus, further randomizing the input to the ID distinguisher.

3.2 Attack on 6-Round Rijndael-160

Another attack using (2) can recover subkey bits from both AK0 and AK6, on
6-round Rijndael-160, similar to [8]. This attack works as follows:

(a) create a pool of 232 plaintexts Pi = (pi
0, . . ., p

i
19) such that (pi

0, p
i
5, p

i
10, p

i
15)

assume all possible 32-bit values, and the remaining bytes assume arbitrary
constant values;

(b) consider 273.5 pools, which mean 2105.5 chosen plaintexts (CP) and 2136.5

plaintext pairs. Find ciphertext pairs that contain zero byte difference in the
bottommost two rows of the state matrix (a 2−80 condition). The expected
number of pairs that satisfy this restriction is 2136.5−80 = 256.5; there is
no need to guess the key where the byte difference is zero because in these
positions the text values are the same, and whatever the key value, the
decrypted value will be equal (though unknown);

(c) guess 80 bits of AK6 = (k6,0, k6,1, . . ., k6,19) corresponding to the topmost
two rows of the state matrix, i.e. (k6,0, k6,1, k6,4, k6,5, k6,8, k6,9, k6,12, k6,13,
k6,16, k6,17);

(d) for each ciphertext pair (C,C′) that satisfies step (b), decrypt the last round
and compute MC−1(C ⊕ C′) and check if there are zero byte differences
in one of the five forbidden positions (0,11,14,17), (1,4,15,18), (2,5,8,19),
(3,6,9,12), (7,10,13,16) of the state matrix (1). The joint probability of these
difference patterns is 5·2−32 ≈ 2−29.5, and the expected number of remaining
pairs is 256.5 · 2−29.5 = 227;

(e) for a plaintext pair (P, P ′) corresponding to a ciphertext pair from step (d),
guess 32 subkey bits (k0,0, k0,5, k0,10, k0,15) of AK0 = (k0,0, k0,1, . . ., k0,19)
and decrypt the first round until after the MC layer. Keep those pairs for
which there is only one nonzero byte difference in the leftmost column after
MC. The probability of this event is 4 · (28 − 1)/232 ≈ 2−22, for three zero
byte differences in a single column of MC;

(f) every subkey that leads to such difference is wrong. After analyzing 273.5

pools, there remains 232(1−2−22)2
27 ≈ 232 ·e−32 < 1 wrong values for AK0;
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(g) steps (c) and (d) require 256.5 · 280 = 2136.5 1-round computations, and step
(e) requires 280 · 232(1 + (1− 2−22) + (1− 2−22)2 + . . . (1− 2−22)2

27
) ≈ 2134

1-round computations. The total time complexity is (2136.5+2134)/6 ≈ 2134

6-round computations, 2105.5 CP and 280 bits or 269.7 blocks of memory
to recover 80 bits of AK6 and 32 bits of AK0. To recover the remaining
80 bits of AK6, just repeat the same attack, but look for the subkey bits
on the lower two rows of the state matrix. Thus, only the time complexity
doubles.

4 ID Distinguisher for Rijndael-192

A 4-round ID distinguiser for Rijndael-192 is depicted in (3), covering AK0 until
AK4.

⎛⎜⎝ δ 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎠ MC◦SR◦SB◦AK0→

⎛⎜⎝ δ 0 0 0 0 0
δ 0 0 0 0 0
δ 0 0 0 0 0
δ 0 0 0 0 0

⎞⎟⎠ SR◦SB◦AK1→

⎛⎜⎝ δ 0 0 0 0 0
0 0 0 0 0 δ
0 0 0 0 δ 0
0 0 0 δ 0 0

⎞⎟⎠
SB◦AK2◦MC→

⎛⎜⎝ δ 0 0 δ δ δ
δ 0 0 δ δ δ
δ 0 0 δ δ δ
δ 0 0 δ δ δ

⎞⎟⎠ SR→

⎛⎜⎝ δ 0 0 δ δ δ
0 0 δ δ δ δ
0 δ δ δ δ 0
δ δ δ δ 0 0

⎞⎟⎠ MC

�→

⎛⎜⎝ 0 δ δ δ δ δ
0 δ δ δ δ δ
0 δ δ δ δ δ
0 δ δ δ δ δ

⎞⎟⎠ AK
−1
3 ◦SB−1

←

⎛⎜⎝ 0 δ δ δ δ δ
0 δ δ δ δ δ
0 δ δ δ δ δ
0 δ δ δ δ δ

⎞⎟⎠ SR−1◦AK
−1
4←

⎛⎜⎝ 0 δ δ δ δ δ
δ δ δ δ δ 0
δ δ δ δ 0 δ
δ δ δ 0 δ δ

⎞⎟⎠ (3)

A similar contradiction between difference patterns in (2) also happens in (3),
before and after the MC layer of the third round. We describe in Appendix A an
example of a 6-round ID distinguisher for Rijndael-192 that is longer than (3).

4.1 Attack on 5-Round Rijndael-192

An attack on 5-round Rijndael-192 using (3) is similar to the one on Rijndael-160
using (2). We use plaintext pools with 232 plaintexts Pi = (pi

0, p
i
1, . . ., p

i
23), such

that (pi
0, p

i
5, p

i
10, p

i
15) range over all 32-bit values, while the remaining bytes

assume arbitrary constant values. But now there are six ciphertext difference
patterns (with zero byte differences) that are incompatible with the difference
pattern in (3). They are (0, 15, 18, 21), (1, 4, 19, 22), (2, 5, 8, 23), (3, 6, 9, 12),
(7, 10, 13, 16) and (11, 14, 17, 20).

Moreover, we have to recover 192 round subkey bits, so the attack has to be
repeated six times, each of which recovers 32 bits of AK0 at a time.

Analogous to the forbidden (ciphertext) positions for Rijndael-160, there are
forbidden (plaintext) nonzero byte positions for Rijndael-192: 0, 4, 8, 12, 16, or
20. Apart from these details, the attack complexities (data/time/memory) for
5-round Rijndael-192 are computed similarly to Rijndael-160: 6 · 261/5 ≈ 261

5-round computations; 6 · 232 ≈ 234.6 CP; memory required is about 232 text
blocks.
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4.2 Attack on 6-Round Rijndael-192

Another attack using (3) can recover subkey bits from both AK0 and AK6, on
6-round Rijndael-192, following [8]. This attack works as follows:

(a) create a pool of 232 plaintexts Pi = (pi
0, p

i
1, . . ., p

i
23) such that (pi

0, p
i
5,

pi
10, pi

15) assume all possible 32-bit values, and the remaining bytes assume
arbitrary constant values;

(b) consider 289.5 pools, which mean 2121.5 chosen plaintexts (CP) and 2152.5

plaintext pairs. Find ciphertext pairs that contain zero byte difference in
the bottommost two rows of the state matrix, which is a (2−8)12 = 2−96

condition. The expected number of pairs that satisfy this restriction is
2152.5−96 = 256.5;

(c) guess 96 bits of AK6 = (k6,0, k6,1, . . ., k6,23) corresponding to the topmost
two rows of the state matrix, i.e. (k6,0, k6,1, k6,4, k6,5, k6,8, k6,9, k6,12, k6,13,
k6,16, k6,17, k6,20, k6,21);

(d) for each ciphertext pair (C,C′) that satisfies step (b), decrypt the last round
and compute MC−1(C ⊕ C′) and check if there are zero byte differences
in one of the six forbidden positions (0,15,18,21), (1,4,19,22), (2,5,8,23),
(3,6,9,12), (7,10,13,16) and (11,14,17,20). The joint probability of these dif-
ference patterns is 6 · 2−32 ≈ 2−29.4, and the expected number of remaining
pairs is 256.5 · 2−29.4 = 227.1;

(e) for a plaintext pair (P, P ′) corresponding to a ciphertext pair from step (d),
guess 32 subkey bits (k0,0, k0,5, k0,10, k0,15) of AK0 = (k0,0, k0,1, . . ., k0,23)
and decrypt the first round until after the MC layer. Keep those pairs for
which there is only one nonzero byte difference in the leftmost column after
MC. The probability of this event is 4 · (28 − 1)/232 ≈ 2−22 due to three
zero byte differences in a single column of MC;

(f) every subkey that leads to such difference is wrong. There remains about
232(1− 2−22)2

27.1 ≈ 232/e2
5.1

< 1 wrong values for AK0;
(g) steps (c) and (d) require 256.5 · 296 = 2152.5 1-round computations, and step

(e) requires 296 · 232(1+ (1− 2−22)+ (1− 2−22)2 + . . . (1− 2−22)2
27.1

) ≈ 2150

1-round computations. The total time complexity is (2152.5+2150)/6 ≈ 2150

6-round computations, 2121.5 CP and 296 bits or 285.4 blocks of memory to
recover 96 bits of AK6 and 32 bits of AK0. To recover the remaining bits of
AK6, just repeat the same attack, but look for the subkey bits on the lower
two rows of the state matrix. The time complexity doubles.

5 ID Distinguisher for Rijndael-224

An example of ID distinguisher for Rijndael-224 is (4), covering five rounds,
from AK0 until AK5. The contradiction happens before and after the MC layer
of the fourth round. The leftmost column before the third MC contains only
one δ, while the remaining columns contain at least two δs. This mean that after
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MC the state will contain only one column of δ’s while the remaining columns
will contain unpredictable differences (denoted by ∗), meaning that the byte
differences could be either zero or nonzero. Before the fourth MC, the leftmost
column contains at least one δ, that is, at least one nonzero value, while after
MC, there are four zero byte differences. It contradicts the branch number of
the MC matrix, which is five.

⎛⎜⎝ δ 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞⎟⎠ MC◦SR◦SB◦AK0→

⎛⎜⎝ δ 0 0 0 0 0 0
δ 0 0 0 0 0 0
δ 0 0 0 0 0 0
δ 0 0 0 0 0 0

⎞⎟⎠ SR◦SB◦AK1→

⎛⎜⎝ δ 0 0 0 0 0 0
0 0 0 0 0 0 δ
0 0 0 0 0 δ 0
0 0 0 δ 0 0 0

⎞⎟⎠
SB◦AK2◦MC

→

⎛⎜⎝ δ 0 0 δ 0 δ δ
δ 0 0 δ 0 δ δ
δ 0 0 δ 0 δ δ
δ 0 0 δ 0 δ δ

⎞⎟⎠ SR→

⎛⎜⎝ δ 0 0 δ 0 δ δ
0 0 δ 0 δ δ δ
0 δ 0 δ δ δ 0
0 δ δ δ 0 0 δ

⎞⎟⎠ MC→

⎛⎜⎝ δ ∗ ∗ ∗ ∗ ∗ ∗
δ ∗ ∗ ∗ ∗ ∗ ∗
δ ∗ ∗ ∗ ∗ ∗ ∗
δ ∗ ∗ ∗ ∗ ∗ ∗

⎞⎟⎠ SR◦SB◦AK3→

⎛⎜⎝ δ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ δ
∗ ∗ ∗ ∗ ∗ δ ∗
∗ ∗ ∗ δ ∗ ∗ ∗

⎞⎟⎠ MC

�→

⎛⎜⎝ 0 δ δ δ δ δ δ
0 δ δ δ δ δ δ
0 δ δ δ δ δ δ
0 δ δ δ δ δ δ

⎞⎟⎠ AK
−1
4 ◦SB−1◦SR−1◦AK

−1
5←

⎛⎜⎝ 0 δ δ δ δ δ δ
δ δ δ δ δ δ 0
δ δ δ δ δ 0 δ
δ δ δ 0 δ δ δ

⎞⎟⎠ (4)

We describe in Appendix A an example of a 6-round ID distinguisher for
Rijndael-224 that is longer than (4), but ineffective for a key-recovery attack.

5.1 Attack on 6-Round Rijndael-224

An attack on 6-round Rijndael-224 using (4) is similar to the one on Rijndael-
160 using (2). A plaintext pool contains 232 plaintexts Pi = (pi

0, p
i
1, . . ., p

i
27),

such that (pi
0, p

i
5, p

i
10, p

i
19) range over all 32-bit values, while the remaining bytes

assume arbitrary constant values. But, in this case there are only four ciphertext
differences pattern that are incompatible with the plaintext difference pattern
in (4), because of the four δs after the fourth MC layer in (4). These patterns
are (0,15,22,25), (6,9,12,27), (7,14,17,20) and (11,18,21,24) of the state.

Moreover, we have to recover 224 user key bits, so the attack has to be re-
peated seven times, each of which recovers 32 user key bits of AK0. The attack
complexities (data/time/memory) for 6-round Rijndael-224 are: 7 · 261/6 ≈ 261

6-round computations; 7 · 232 ≈ 234.8 CP; memory required is 232 text blocks.

5.2 Attack on 7-Round Rijndael-224

An attack on 7-round Rijndael-224, using (4), can be applied in a similar way
as the attack on 6-round Rijndael-192.

The time complexity is 2167 7-round computations, 2138 CP and 2112 bits or
about 2104 blocks of memory, to recover the full AK7 and 32 bits of AK0.

6 ID Distinguisher for Rijndael-256

An example of ID distinguisher for Rijndael-256 is (5), covering five rounds,
from AK0 until AK5. A similar contradiction between difference patterns as in
(4) also happens in (5), before and after the MC layer of the fourth round. Notice
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that before the fourth MC, the second column from the left contains (∗, δ, ∗, ∗),
where ‘∗’ can be either a zero or a nonzero difference. After MC, the same column
contains only zero byte differences. Thus, there is at least one and at most four
nonzero byte differences. Whatever the value of the ‘∗’s, there is a contradiction
due to the branch number of the MC matrix, which is five.

⎛⎜⎝ δ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎠ MC◦SR◦SB◦AK0→

⎛⎜⎝ δ 0 0 0 0 0 0 0
δ 0 0 0 0 0 0 0
δ 0 0 0 0 0 0 0
δ 0 0 0 0 0 0 0

⎞⎟⎠ SR◦SB◦AK1→

⎛⎜⎝ δ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 δ
0 0 0 0 0 δ 0 0
0 0 0 0 δ 0 0 0

⎞⎟⎠
SB◦AK2◦MC

→

⎛⎜⎝ δ 0 0 0 δ δ 0 δ
δ 0 0 0 δ δ 0 δ
δ 0 0 0 δ δ 0 δ
δ 0 0 0 δ δ 0 δ

⎞⎟⎠ SR→

⎛⎜⎝ δ 0 0 0 δ δ 0 δ
0 0 0 δ δ 0 δ δ
0 δ δ 0 δ δ 0 0
δ δ 0 δ δ 0 0 0

⎞⎟⎠ MC→

⎛⎜⎝ ∗ ∗ δ ∗ ∗ ∗ δ ∗
∗ ∗ δ ∗ ∗ ∗ δ ∗
∗ ∗ δ ∗ ∗ ∗ δ ∗
∗ ∗ δ ∗ ∗ ∗ δ ∗

⎞⎟⎠ SR◦SB◦AK3→

⎛⎜⎝ ∗ ∗ δ ∗ ∗ ∗ δ ∗
∗ δ ∗ ∗ ∗ δ ∗ ∗
∗ ∗ ∗ δ ∗ ∗ ∗ δ
∗ ∗ δ ∗ ∗ ∗ δ ∗

⎞⎟⎠ MC

�→

⎛⎜⎝ δ 0 δ δ δ δ δ δ
δ 0 δ δ δ δ δ δ
δ 0 δ δ δ δ δ δ
δ 0 δ δ δ δ δ δ

⎞⎟⎠ AK
−1
4 ◦SB−1◦SR−1◦AK

−1
5←

⎛⎜⎝ δ 0 δ δ δ δ δ δ
0 δ δ δ δ δ δ δ
δ δ δ δ δ δ 0 δ
δ δ δ δ δ 0 δ δ

⎞⎟⎠ (5)

6.1 Attack on 6-Round Rijndael-256

An attack on 6-round Rijndael-256 using (5) is similar to the one on Rijndael-224
using (4). A plaintext pool contains 232 plaintexts Pi = (pi

0, p
i
1, . . ., p

i
31), such

that (pi
0, pi

5, pi
14, pi

19) range over all 32-bit values, while the remaining bytes
assume arbitrary constant values. But, in this case, there are six ciphertext
difference patterns that are incompatible with the plaintext difference pattern
in (5). They are (1,4,23,26), (5,8,27,30), (2,9,12,31), (7,10,17,20), (11,14,21,24)
and (15,18,25,28) of the state (1).

Moreover, we have to recover 256 user key bits, so the attack has to be repeated
eight times, each of which recovers 32 bits of AK0. The attack complexities
(data/time/memory) are: 8 · 261/6 ≈ 261.4 6-round computations; 8 · 232 = 235

CP; memory required is 232 text blocks.

6.2 Attack on 7-Round Rijndael-256

An attack on 7-round Rijndael-256 using (5) can be applied in a similar setting
as the attack on 7-round Rijndal-224.

The time complexity is 2182 7-round computations, 2153 CP and 2128 bits or
2117 block of memory, to recover the full AK7 and 32 bits of AK0.

7 Conclusion

This paper described impossible differential distinguishers and attacks on
reduced-round versions of Rijndael with blocks larger than 128 bits.

Table 1 compares the attack complexities of known attack on reduced-round
Rijndael versions. The ID attacks presented in this paper do not threaten the
full-version of any Rijndael cipher.
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Table 1. Comparison of attacks on reduced-round versions of Rijndael

Cipher #Rounds Time Data Memory Ref. Comments

AES 5 231 229.5 CP 232 [6] Imp. Diff.
6 2122 291.5 CP 232 [8] Imp. Diff.
7 280 252 RK-CP — [27] (ID) 2 rel. keys
7 294 256 RK-CP — [5] (ID) 32 rel. keys
7 2116 2111 RK-CP — [13] (ID) 2 rel. keys
7 2145 237 RK-CP — [27] (ID) 2 rel. keys
7 2186 292 CP — [24] Imp. Diff.
8 2134 2116 RK-CP — [5] (ID) 32 rel. keys
8 2136 2112 RK-CP — [27] (ID) 2 rel. keys
8 2153 288 RK-CP — [27] (ID) 2 rel. keys
8 2159 292 RK-CP — [5] (ID) 32 rel. keys
8 2177 264.5 RK-CP — [27] (ID) 2 rel. keys
8 2183 288 RK-CP — [13] (ID) 2 rel. keys
8 2184 268.5 RK-CP — [5] (ID) 32 rel. keys

Rijndael-160 4 215 29 CP 28 [21] Multiset
5 238 233 CP 232 [21] Multiset
5 244 210.5 CP 28 [21] Multiset
5 261 234.3 CP 232 Sect.3.1 Imp. Diff.
6 243.5 234.5 CP 232 [21] Multiset
6 2135 2105.5 CP 269.7 Sect.3.2 Imp. Diff.
7 2133.5 2129 CP 2128 [21] Multiset

Rijndael-192 4 214 29 CP 28 [21] Multiset
5 225 232 CP 232 [21] Multiset
5 261 234.6 CP 232 Sect.4.1 Imp. Diff.
6 243.5 234 CP 232 [21] Multiset
6 2151 2121.5 CP 285.4 Sect.4.2 Imp. Diff.
7 2141 2130.5 CP 2128 [21] Multiset

Rijndael-224 4 3 28 CP 28 [21] Multiset
5 236 210 CP 28 [21] Multiset
6 243.5 234.5 CP 232 [21] Multiset
6 261 234.8 CP 232 Sect.5.1 Imp. Diff.
7 2141 2130.5 CP 2128 [21] Multiset
7 2167 2138 CP 2104 Sect.5.2 Imp. Diff.

Rijndael-256 4 — 28 CP 28 [21] Multiset
5 238 233 CP 232 [21] Multiset
6 243.5 233 CP 232 [21] Multiset
6 261.4 235 CP 232 Sect.6.1 Imp. Diff.
7 2141 2130.5 CP 2128 [21] Multiset
7 2182 2153 CP 2117 Sect.6.2 Imp. Diff.

CP: Chosen-Plaintext; RK-CP: Related-Key Chosen-Plaintext

The 5-round ID distinguishers for Rijndael-224 and Rijndael-256 do not ap-
ply to the AES. These new results are due to the larger text blocks and the
consequent slower diffusion (SR and MC) in the former.
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The ID attack results do not depend on any particular key sets or subkey val-
ues (weak-key assumptions). Moreover, these distinguishers also hold for duals
of Rijndael [2] since changing the irreducible polynomial, or the coefficients of
MixColumns, or the S-box (as long as it is invertible) do not affect the distin-
guishers. We have not applied related-key impossible differentials on large-block
Rijndael versions, such as [27], because key schedule algorithms have only been
officially defined for the AES (128-bit text block), and not for larger block sizes
of Rijndael [25].

References

1. AES The Advanced Encryption Standard Development Process (1997),
http://csrc.nist.gov/encryption/aes/

2. Barkan, E., Biham, E.: In How Many Ways Can You Write Rijndael. In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 160–175. Springer, Heidelberg
(2002)

3. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds using Impossible Differentials, Technion, CS Dept, Tech Report CS0947
(1998)

4. Biham, E., Biryukov, A., Shamir, A.: Miss-in-the-Middle Attacks on IDEA, Khufu
and Khafre. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 124–138.
Springer, Heidelberg (1999)

5. Biham, E., Dunkelman, O., Keller, N.: Related-Key Impossible Differential Attacks
on 8-round AES-192. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp.
21–33. Springer, Heidelberg (2006)

6. Biham, E., Keller, N.: Cryptanalysis of Reduced Variants of Rijndael, 3rd AES
Conference, New York, USA (2000), http://csrc.nist.gov/encryption/aes/
round2/conf3/aes3papers.html

7. Biryukov, A.: The Boomerang Attack on 5 and 6-round Reduced AES. In: Dob-
bertin, H., Rijmen, V., Sowa, A. (eds.) Advanced Encryption Standard – AES.
LNCS, vol. 3373, pp. 11–15. Springer, Heidelberg (2005)

8. Cheon, J.H., Kim, M., Kim, K., Lee, J.-Y., Kang, S.: Improved Impossible Dif-
ferential Cryptanalysis of Rijndael and Crypton. In: Kim, K.-c. (ed.) ICISC 2001.
LNCS, vol. 2288, pp. 39–49. Springer, Heidelberg (2002)

9. Daemen, J., Rijmen, V.: AES Proposal: Rijndael, 1st AES Conference, California,
USA (1998), http://www.nist.gov/aes

10. Daemen, J., Rijmen, V.: The Design of Rijndael - AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

11. FIPS180-2, Secure Hash Standard (SHS), FIPS PUB 180-2, Federal Information
Processing Standard Publication 180-2, National Institute of Standards and Tech-
nology (NIST) (August 2002)

12. FIPS197, Advanced Encryption Standard (AES), FIPS PUB 197 Federal Informa-
tion Processing Standard Publication 197, U.S. Department of Commerce (Novem-
ber 2001)

13. Jakimoski, G., Desmedt, Y.: Related-Key Differential Cryptanalysis of 192-bit Key
AES Variants. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006,
pp. 208–221. Springer, Heidelberg (2003)

14. Jakobsen, T., Knudsen, L.R.: The Interpolation Attack on Block Ciphers. In: Bi-
ham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 28–40. Springer, Heidelberg (1997)

http://csrc.nist.gov/encryption/aes/
http://csrc.nist.gov/encryption/aes/round2/conf3/aes3papers.html
http://csrc.nist.gov/encryption/aes/round2/conf3/aes3papers.html
http://www.nist.gov/aes


116 J. Nakahara Jr. and I.C. Pavão

15. Knudsen, L.R.: DEAL – a 128-bit Block Cipher, Technical Report #151, University
of Bergen, Dept. of Informatics, Norway (February 1998)

16. Knudsen, L.R., Berson, T.A.: Truncated Differentials of SAFER. In: Gollmann, D.
(ed.) Fast Software Encryption. LNCS, vol. 1039, pp. 15–26. Springer, Heidelberg
(1996)

17. Langford, S.K.: Differential-Linear Cryptanalysis and Threshold Signatures, PhD
thesis, Stanford University, USA (1995)

18. Lenstra, H.W.: Rijndael for Algebraists (April 2002), http://math.berkeley.edu/
hwl/papers/rijndael0.pdf

19. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

20. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton, USA (1996)

21. Nakahara Jr., J., de Freitas, D.S., Phan, R.C.W.: New Multiset Attacks on Rijndael
with Large Blocks. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS,
vol. 3715, pp. 277–295. Springer, Heidelberg (2005)

22. NESSIE, New European Schemes for Signatures, Integrity and Encryption (Jan-
uary 2000), http://www.cryptonessie.org

23. NESSIE Deliverable D21, Performance of Optimized Implementations of the
NESSIE Primitives, version 2.0 (February 20, 2003), https://www.cosic.esat.
kuleuven.be/nessie/deliverables/

24. Phan, R.C.W.: Impossible Differential Cryptanalysis of 7-round Advanced Encryp-
tion Standard (AES). Information Processing Letters 91(1), 33–38 (2004)

25. Rijmen, V.: private communication (2006)
26. Shannon, C.E.: Communication Theory of Secrecy Systems. Bell System Technical

Journal 28, 656–715 (1949)
27. Zhang, W., Wu, W., Zhang, L., Feng, D.: Improved Related-Key Impossible Dif-

ferential Attacks on Reduced-Round AES-192. In: Biham, E., Youssef, A.M. (eds.)
13th Selected Areas in Cryptography, SAC 2006, pp. 101–118. Springer, Heidelberg
(2006)

A Appendix A

We have found the 6-round ID distinguisher (6), which is longer than (4), but
is ineffective for a key-recovery attack on Rijndael-224 because there are too
many (24) zero output byte differences. The main novelty in this distinguisher
is the Δ truncated differential which starts with four nonzero byte differences,
δ, at AK6 and evolves until AK5 with four δ bytes in the leftmost column.
After MC−1 of the fifth round, there can be up to four nonzero byte differences
(‘∗’) in that column. At least one of those ‘∗’ is nonzero, as guaranteed by the
branch number of the MC matrix. Continuing with the difference propagation
backwards, we arrive at the third round, where several contradictions happen
at the columns in MC. For instance, before the MC layer, the leftmost column
contains the values (δ, 0, 0, 0), and after the MC layer the same column contains
(∗, 0, 0, 0). The sum of δs and ‘*’s before and after the MC layer is two. Whether
the ‘*’ is a zero or nonzero difference contradicts the branch number of Rijndael,
which is five. A similar reasoning applies to (7), a 6-round ID distinguisher for
Rijndael-192.
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Abstract. In the authenticated encryption mode GCM (Galois Counter Mode), 
the CTR (counter) mode for data encryption that has no feedback path can eas-
ily be pipelined to boost the operating frequency of a hardware implementation. 
However, the hash function for the authentication tag generation performs mul-
tiply-add operations sequentially by chaining the result in the previous cycle, 
and this becomes the critical path in the high-speed GCM hardware. Therefore, 
we propose a high-speed pipelined hardware architecture for GCM in conjunc-
tion with a pipelined multiply-adder on a Galois field GF(2128). This architec-
ture was implemented with a 4-stage pipelined multiply-adder and a 56-stage 
pipelined AES (Advanced Encryption Standard) circuit by using a 0.13-um 
CMOS standard cell library. This implementation showed very high throughput 
of 54.94 Gbps with 272 Kgates for the key lengths of 128, 192, and 256 bits. 
The high hardware efficiency (throughput/gate) of 201.75 Kbps/gate is also an 
improvement over prior art. 

1   Introduction 

GCM [1] is an authenticated encryption mode that generates cipher text and an au-
thentication tag simultaneously. The CTR (counter) mode [2] is used for the encryp-
tion, and a hash function repeats multiply-add operations over GF(2128) to generate 
the tag. The National Institute of Standards and Technology (NIST) standardized 
GCM as SP 800-38D [3]. GCM with AES [4] (GCM-AES) has also been adopted in 
many standards such as RFC 4106 [5] for payload encryption in IPSec (by the Inter-
net Engineering Task Force (IETF)), IEEE 802.1AE [6] for frame data encryption in 
the Ethernet protocol, and IEEE P1619.1 [7] for tape storage encryption. 

We have developed high performance GCM hardware architectures [9] [10], which 
have a good scalability between circuit size and throughput, and evaluated their per-
formances in combination with various AES circuits. The single 128-bit multiply-add 
operation on GF(2128) for the hash function is much faster than the single 128-bit 
block encryption with AES, but it is easy to boost the throughput of the encryption by 
utilizing the parallel operating capability of the CTR mode with multiple AES hard-
ware cores. In contrast, the multiply-add operation is intrinsically sequential, and thus, 
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the GF(2128) multiplier becomes the critical path when the AES part is made highly 
parallel. In reference [9], we proposed a parallel multiplier architecture for GCM 
hardware to solve this problem. However, the architecture needs an additional 256-bit 
I/O port (128 bits for plaintext and 128 bits for ciphertext) for each additional parallel 
processing block that contains one multiply-adder and one AES circuit. For example, 
the 4-parallel version in the reference has a 512-bit data input port and a 512-bit data 
output port. 

In this paper, we propose a high-speed GCM hardware architecture where the criti-
cal path of the multiplier is divided into multiple pipeline stages to boost operating 
frequency. The input data runs through the single pipelined data path, and thus we do 
not need to increase the number of I/O ports. 

This paper is organized as follows. In Section 2, a pipelined multiply-adder for the 
hash function is presented with a detailed example of a 4-stage version. The datapath 
architecture of the GCM hardware along with a pipelined AES circuit using a 3-stage 
composite field S-box is described in Section 3. Section 4 evaluates its performance 
by using a CMOS ASIC library in a comparison with prior art. Finally, the conclu-
sions are described in Section 4. 

2   Pipelined Multiply-Adder for Hash Function 

The hash function of GCM repeats multiply-add operations according to 
Equation (A.3) in the Appendix. Reference [1] showed 2-parallel multiply-add opera-
tions for the hash function, where the input data is interleaved for },,,{ 531 AAA  

and },,,{ 642 AAA as in Equation (1). 

HAHAHA

HAHAHA

HHAHAHAHAHAHA

HAXX iii

))((      

))((      

))))))((((((      

)(

6
2

4
2

2

2
5

2
3

2
1

654321

1

⊕⊕⊕
⊕⊕=

⊕⊕⊕⊕⊕=
⊕= −

 (1) 

Not only 2-parallelism, but higher parallelism is possible, such as 4-parallel operation 
where four consecutive inputs (for example A1, A2, A3, and A4) are processed at the 
same time as shown in the following Equation. 
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We can generalize this equation to q-parallel processing as Equation (3), where the 
number of data block is pq. The q GF(2128) multiply-adders are used for this equation, 
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and q data blocks {A1, A2,･･･, Aq} are processed in the first cycle, then {A1+q, A2+q, 

･･･, A2q} are done in the second cycle, and so on. 
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Fig. 1 shows the 4-parallel hardware architecture for Equation (2) proposed in ref-
erence [10], which uses four 128-bit GF multipliers. The AES circuit needs to feed 
four 128-bit ciphertext data blocks to the multiply-adder every operating cycle, and 
thus four 128-bit plaintext input and four 128-bit ciphertext ports are required for the 
GCM circuit using this 4-parallel architecture. 
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Fig. 1. Parallel architecture for multiply-addition (q=4) 
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Fig. 2. Proposed pipelined architecture for multiply-addition (q=4) 
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Fig. 2 shows the pipelined multiply-adder architecture proposed in the current pa-
per. This circuit is a 4-stage pipelined version based on the same Equation (2) used in 
Fig. 1. A 128-bit × 128-bit multiplier is divided into four 128-bit × 32-bit sub-
multipliers, and three 128-bit registers Za, Zb, and Zc are inserted to shorten the criti-
cal path. Therefore one 128-bit multiplication is executed in four clock cycles, but the 
throughput remains at 128-bits/clock because four independent multiplications are 
processed in each sub-multiplier. This architecture can receive a 128-bit input every 
clock cycle for any number of pipeline stages. Therefore, the operating frequency can 
easily be boosted by increasing the number of pipeline stages. 

Fig. 3 is an example operation for the 4-stage pipelined multiply-adder with 5 data 
blocks A1~A5, and is explained with Equations (4.a)~(4.o). Here, we assume that the 
value H4 has already been calculated, and the number of input data blocks is given 
before the multiply-add operations of the hash function start. In this example, Ha~Hd 
and Ha4~Hd4 represent bits [127:96], [95:64], [63:32], and [31:0] of H and H4,  
respectively. 
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HdZdZcZdHcZdZbZc 366477   , ⊕=⊕=  (4.j) 

72368   , ZdXXHaZdZa ⊕==  (4.k) 

723688   , ZdXXHbZdZaZb ⊕=⊕=  (4.l) 

HcZdZbZc 688 ⊕=  (4.m) 

HdZdZcZd 688 ⊕=  (4.n) 

834 ZdXX ⊕=  (4.o) 

In Fig. 3(a), after all of the 128-bit registers are cleared to 0, the 128-bit input A1 is 
multiplied by Ha4 (the most significant 32 bits of H4), and the 128-bit result Za1 is 
stored into the register Za in the next cycle. At the same time, A1 is stored into the 
register Aa. In Fig. 3(b), A1 is multiplied by Hb4 (bits 95~64 of H4) and added to Za1, 
and the result Zb1 is stored into the register Zb. Then A1 is moved from the register 
Aa to Ab. In Figs. 3(c)~(d), A1Hc4 and A1Hd4 are calculated and summed up one 
after another, and finally, the 128-bit product of the input A1 and the constant value 
H4 is obtained in the register Zd. In Fig. 3(b), the second block A2 is input and is 
processed in parallel with the multiply-add operation on A1. In Figs. 3(c) and (d), A3 
and A4 are input to be processed, respectively. Therefore, four multiply-add (128-bit × 
32-bit + 128-bit) operations are processed simultaneously in this example. 

Note that A3 and A4 need to be multiplied by H3 and H2, respectively. Therefore, 
they are multiplied by H three times and twice, respectively, by rotating them in the 
pipeline loop. H3 and H2 can be calculated in advance, but that is of no net benefit 
because extra clock cycles are required to calculate the values, and extra registers are 
needed to hold them. In summary, A1, A2, A3, A4, and A5 are multiplied by 
H5(=H4×H), H4, H3(=H×H×H), H2(=H×H), and H, respectively. 

In Fig. 3(e), the final input block A5 is added to Zd5, and then the operation to cal-
culate following value is started. 

5
15

4
1515 )()( HAHAHHAAHZdA ⊕=⊕=⊕  (5) 

The 128-bit temporary value 15
'
5 ZdAA ⊕=  is shifted thorough registers Aa~Ac, 

and is sequentially multiplied by the 32-bit constants Ha, Hb, Hc, and Hd during 
Figs. 3(e)~(h). Then the partial products are summed up using the registers Aa~Zd. In 
parallel, the following operations are done. In Fig. 3(f), the value Zd2 (=A2H

4) held in 
the register Zd is transferred to the register XI as X1. In Fig. 3(g), Zd3 (=A3H) is fed 
back to the register Aa to be multiplied by H two more times, and Zd3×Ha is also fed 
back to the register Za. In this cycle, the registers Aa and Za are not used, because Zd2 
(=A2H

4) has not been fed back to the registers but has been stored in XI. In Fig. 3(h), 
Zd4 (=A4H) is also fed back to the registers to be multiplied by H. 
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Fig. 3. Example of pipelined operations for Equations (4.a)~(4.o) 
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In Fig 3(i), )( 4
155 HAHAZd ⊕=  from the register Zd is added to X1 in the regis-

ter XI, and X2 is obtained. 

HAHAHAZdXX 5
4

2
5

1512 ⊕⊕=⊕=  (6) 

In Figs. 3(j)~(k), Zd6 (=A3H
2) is obtained in the register Zd, but A3 should be multi-

plied by H3, and thus Zd6 is not summed into the register XI, but is fed back to the 
registers Aa and Za. In contrast, Zd7 (=A4H

2) is summed into the register XI in  
Fig. 3(l) and the value X3 is obtained in XI. 

HAHAHAHAZdXX 5
2

4
4

2
5

1623 ⊕⊕⊕=⊕=  (7) 

In Figs. 3(l)~(o), Zd8 (=A3H
3) is calculated in the register Zd, and then the final result 

X4 of Equation (8) is obtained by adding Zd8 to X3 in the register XI. 

HAHAHAHAHA

ZdXX

5
2

4
3

3
4

2
5

1

734

⊕⊕⊕⊕=
⊕=

 (8) 

3   Pipelined GCM Hardware Architecture 

Fig. 4 shows the architecture of the GCM circuit, where the 4-stage pipelined multi-
ply-adder described in the previous section is used for the hash function. The register 
Z is added to the feedback path in the hash function block of Fig. 4, which is not in-
cluded in Fig. 2. This is only to shorten the critical path but the basic operation is not  
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Fig. 4. Proposed GCM hardware architecture (q=4) 
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changed. In our previous papers [9] and [10], we implemented several GCM-AES 
circuits with the composite field [12] and BDD S-boxes for compact and high-speed 
implementations, respectively. However, only the composite field S-box was imple-
mented this time, because the inside of the composite field S-box can easily be pipe-
lined to increase the operating frequency, as shown in Fig. 5. The fast but large BDD 
S-box is needed to execute the S-box operation in single clock cycle. 

The AES encryption circuit has an unrolled architecture with 14 round function 
blocks, and supports 128-, 192-, and 256-bit keys. Each round function block has the 
4-stage (3 stages for S-box and 1 stage for the rest) pipelined structure. Therefore, the 
latencies for 128-, 192-, and 256-bit keys are 4×10=40 clocks, 4×12=48 clocks, and 
4×14=56 clocks, respectively. When data blocks are fed continuously, a maximum 
throughput of 128 bits/clock is obtained. Both the round function block and the multi-
ply-adder have 4-pipline stages, but these fortuitously happened to coincide when we 
had balanced the critical path delays in the AES and the hash function blocks. All the 
round keys are pre-calculated by a key scheduler not shown in the figures and stored 
in key registers. The register to register feedback path of the key scheduler contains 
an S-box, several XORs, and some selectors, which made it longer than the round 
function, so the path was divided into 5 stages. 
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Fig. 5. Pipelined AES circuit (q=4) 

4   Hardware Performance Comparison in ASICs 

The new AES-GSM circuit was synthesized by using a 0.13-μm CMOS standard cell 
library [15], and the results are shown in Table 1 in comparison with prior art. The  
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Table 1. Performance Comparison of GCM 

Ref. 
GCM 
Archi-
tecture 

AES 
Architec-

ture 

# Round 
Function 
Blocks 

Key 
Length
(bits) 

S-Box
Critical

Path 
(ns) 

Opti-
mize

Max.
Freq.

(MHz)

Thr’put
(Gbps)

Size 
(gates) 

Kbps 
/gate 

Li-
brary 
(μm) 

3.33 Size 300.3 38.44 262,118 146.65 This 
Work 

Pipe- 
lined 

4-Innner 
Pipelined 14 

Com-
posite 2.33 Speed 429.2 54.94 272,291 201.75 

5.00 Size 200.0 25.60 174,016 147.11 Com-
posite 4.00 250.0 32.00 181,198 176.60 Pipelined 14 

BDD 3.00 
Speed

333.3 42.67 297,542 143.40 
5.00 Size 200.0  6.40 73,104 87.55 Com-

posite 4.00 250.0  8.00 79,566 100.55 

Sequen-
tial 4-stage 

Pipelined 
Loop 

4 

BDD 3.00 
Speed

333.3  10.67 118,645 89.90 
5.00 Size 200.0  6.40 96,241 66.50 Com-

posite 4.00 250.0  8.00 106,893 74.84 

[9] 

4 Paral-
lel Loop 4 

BDD 3.00 
Speed

333.3  10.67 162,373 65.69 
5.00 Size 200.0 102.40 600,440 170.54 Com-

posite 4.00 250.0 128.00 697,567 183.49 [10] 
4 Paral-

lel Pipelined 14×4 

128, 
192, 
256 

BDD 3.15 
Speed

317.5 162.56 979,348 165.99 

0.13 

[12]      3.69  271.0  34.69 498.658 69.57 0.18 
     3.33  300.0  7.00 97,000 72.1  
   128      10.00 190,000 52.6  [13] 
   128      20.00

 40.00
180,000
330,000

111.1
121.2

 

4.00  250  3.2 30,707 104.2
2.00  500  6.4 40,335 158.6

0.13 
[14] Sequen-

tial 
Loop 1 128 

256 
 

1.21  824 10.5 49,633 211.5 0.09 

AES datapath of the proposed architecture is similar to that of “Sequential GCM + 
Pipelined AES” in Reference [9] that has 14 round function blocks, but the round 
function blocks and the multiply-adder are divided into several stages to shorten the 
critical path. As a result, the operating frequency of the composite field S-box version 
was increased by 70% (from 250.0 MHz to 429.2 MHz). Our new design also 
achieved the 30% higher throughput of 54.94 Gbps with a smaller size of 272 Kgates 
in comparison to the BDD S-box version of reference [9], whose throughput is 42.67 
Gbps with 298 Kgates. The hardware efficiency defined as throughput per gate is 
201.75 Kbps/gate for the proposed architecture, which is the highest among all of the 
GCM hardware we have designed [9] [10]. 

The proposed architecture is much faster than the GCM hardware in other refer-
ences [12][13][14], and only the one with a simple loop-architecture synthesized by 
using a 0.09-μm CMOS library in [14] has a higher hardware efficiency of 211.55 
Kbps/gate (=10.5Gbps/49,633gates). This is only due to the natural speed advantage 
of the 0.09-μm process technology, and the throughput of the same design synthe-
sized by using a 0.13-μm CMOS library is 158.6 Kbps/gate, which is 20% lower than 
ours. The throughput of the 0.09-μm implementation is calculated as 128 bits × 824 
MHz / 10 clocks = 10.55 Gbps, and thus this value is for a 128-bit key that takes 10 
clock cycles for one 128-bit block encryption. Therefore, when a 256-bit key that 
requires 14 clock cycles is used, the throughput would be degraded down to 128 bits 
× 824 MHz / 14 clocks = 7.53 Gbps, and the hardware efficiency would be 7.53 Gbps 
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/ 49,633 gates = 151.79 Kbps/gate. For the 0.13-μm implementation, these value 
would be 128bits × 500 MHz / 14 clocks = 4.57 Gbps and 4.57 Gbps / 40,335 gates = 
113.34 Kbps/gates. Though a 192-bit key is not supported in [14], our implementation 
achieved a throughput of 54.9 Gbps and the hardware efficiency of 201.75 Kbps/gate 
for the 128-, 192-, and 256-bit keys. As a result, our proposed architecture has advan-
tages over the prior art in terms of hardware efficiency. 

5   Conclusion 

We proposed a pipelined Galois field multiply-adder to boost the operating frequency 
of the hash function block that was the bottleneck for higher speed GCM hardware, 
and evaluated its performance using a 0.13-μm CMOS standard cell library. The 
GCM-AES hardware implemented with the 4-stage pipelined hash function block and 
the 56-stage AES block using the 3-stage composite field S-box achieved a very high 
throughput of 54.94 Gbps with 272 Kgates. Our design supports key lengths of 128, 
192, and 256 bits, and the throughput is independent of the key size. Further speed-up 
is possible by increasing the number of pipeline stages in the critical path to achieve 
higher operating frequencies. In addition to the speed, the hardware efficiency defined 
as throughput per gate was also measured, showing the strong advantage of the pro-
posed architecture over the prior art. 
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Appendix: Galois Counter Mode 

Fig. A shows an example of GCM operations. GCM receives a secret key K, an initial 
vector IV (96 bits are recommended) for the counter value Y0, authenticated data A, 
and plain text P for encryption, and then generates cipher text C and an authentication 
tag T. The authenticated data A and the plain text P are divided into n and m 128-bit 

blocks ( *
121 ,,, mm AAAA −  and *

121 ,,, nn PPPP − ), respectively. When a final block 
*
mA  or *

nP  is shorter than 128 bits (u and v bits, respectively, are used in the follow-

ing equations), the rest of the block is filled with 0s. The authenticated encryption 
operation is defined as follows.  
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The hash function GHASH( ) receives a 128-bit constant H determined by the key 
K, the m-block authenticated data A, and the n-block ciphertext C, and then produces 
a 128-bit hash value. The initial value IV is encrypted and then XORed with the hash 
value, and the first t bits of the result become the authentication tag T. 

In decryption, an authentication tag T' is reproduced from the authenticated data A 
and the ciphertext C, and then T' is checked to match the correct tag T. 

The Galois field GF(2128) used in GCM is defined by the following irreducible 
polynomial. 
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1)( 27128 ++++= xxxxxg  (A2) 

The hash function GHASH( ) defined over the field repeats multiplication and addi-
tion as shown in Equation (A3). 
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Then the final value Xm+n+1 becomes the hash value. 
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Fig. A. Example GCM operation (m = 5, n = 4) 
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Abstract. Oblivious transfer (OT) is a powerful primitive in modern
cryptography, often used in a context of semi-honest adversaries. Com-
mitted oblivious transfer (COT) is an enhancement involving the use of
commitments, which can be used in many applications of OT covering
particular malicious adversarial behavior. For OT, many protocols are
known that cover the transfer of bit strings rather than just single bits.
For COT, though, the known protocols only cover the transfer of bits.

In this paper, we thus present efficient COT protocols for transferring
(long) bit strings, which perform quite well in comparison to the most
efficient COT protocols for bits. We prove the security of our proto-
cols following the simulation paradigm in the cryptographic model, also
assuming the random oracle model for efficient non-interactive proofs.
Also, as a motivation for the use of COT instead of OT, we point out
that a protocol which uses OT as a subprotocol may have subtle security
issues in the presence of malicious adversaries.

Keywords: Committed oblivious transfer, Commitments, Homomor-
phic encryption.

1 Introduction

Oblivious transfer is a fundamental primitive in modern cryptography. After
Rabin introduced oblivious transfer [Rab81] a huge number of papers appeared
regarding possible extensions, variants and applications of oblivious transfer.
In Rabin’s original oblivious transfer, the sender has a secret and sends it to
a chooser who receives the secret with probability 1/2 while the sender does
not know whether the secret has been received. Later, Even, Goldreich and
Lempel [EGL85] presented 1-out-of-2 Oblivious Transfer (OT), where the sender
has two values s0 and s1 and the chooser has a selection bit b. Upon completion
of the protocol, the chooser holds the value sb while the sender does not know
which of the two values s0 and s1 the chooser got who, in turn, learns nothing
about s1−b. Crépeau [Cré87] showed that Rabin’s OT and 1-out-of-2 OT are
equivalent. 1-out-of-2 OT will be called standard OT throughout the rest of the
paper.

J. Garay et al. (Eds.): ISC 2007, LNCS 4779, pp. 130–144, 2007.
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Committed Oblivious Transfer (COT) is obtained as a natural combination of 1-
out-of-2 oblivious transfer and bit commitments. This notion was first introduced
by Crépeau [Cré90] under the name Verifiable Oblivious Transfer. Later, Crépeau
et al. [CvdGT95] presented a more efficient COT protocol and showed that from
COT one can construct a protocol for general secure multi-party computation
in the malicious case. Briefly, in these variants of oblivious transfer, the parties
running the protocol are committed to their input values prior to the protocol.
That is, if the sender has two private values to be obliviously transferred to the
chooser who has a selection bit, all these input values must have been committed
to by the respective parties before the transfer starts. At the end of the protocol,
the chooser will receive one of the corresponding private values of the sender
together with a (public) commitment by the chooser.

For many applications in which OT is used as a subprotocol, the security of
the overall protocol is considered only in the semi-honest model. However, there
may be subtle security issues when such protocols using OT are extended to the
malicious case. We highlight this in this paper and we describe how COT helps
to overcome these problems. Namely, the link between OT and the surrounding
protocol can be securely done with the use of COT.

Since efficient COT protocols for transferring bits are known, one may thus
replace applications of OT of bits by COT of bits. An interesting question is
how to do the same when transferring bit strings. This is the starting point of
this work. In this paper, we present efficient protocols for string COT based on
any (2,2)-threshold homomorphic cryptosystem.

Related Work
Garay et al. [GMY04] present the most efficient COT protocol to date re-
alizing COT functionality in the Universal Composable (UC) framework of
Canetti [Can00]. However, this protocol only works for bits whereas our pro-
tocol allow for bit strings of arbitrary length (up to the length of plaintexts of
the underlying threshold homomorphic cryptosystem, or a multiple thereof). In
this paper, we will just consider a stand-alone setting, noting that the efficiency
of our protocols improves the efficiency of the UC-protocols of [GMY04] when
trimmed down to a stand-alone setting (replacing, e.g., the use of Ω-protocols
by Σ-protocols).

If the parties are committed to the inputs of the OT protocol but there is no
commitment to chooser’s output we refer to this variant as Verifiable OT (VOT)
in this paper. In this direction, Cachin and Camenisch [CC00] as well as Jarecki
and Shmatikov [JS07] present protocols for VOT in 2 rounds. These protocols
can be converted into COT by requesting the chooser to recommit to its received
value and to prove the validity of this commitment w.r.t. the commitments for
the inputs. In general, this incurs one extra communication round.

Lipmaa [Lip03] also presents a protocol under the name verifiable homomor-
phic oblivious transfer for strings. However, verifiability is defined in a different
sense. The chooser will get commitments to all inputs of the sender which can
later be used and referred to by the surrounding protocol. Similarly, the sender
gets an encryption of the chooser’s input. Hence, this is yet another form of OT,
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which is related to COT and VOT, and is somewhat similar to the notion of
“committing OT”, introduced later in [KS06].

Recently, Camenisch et al. [CNs07] presented a protocol for adaptive OT, in
which a sender has a list of messages and a receiver adaptively chooses one mes-
sage after the other. To prevent the so-called selective-failure problem mentioned
in [CNs07] (which is similar to the problem discussed in [KS06], see below), the
sender is required to commit to its input list of messages and to prove consistency
w.r.t. this list in all ensuing runs of adaptive OT.

More generally, we note that standard OT protocols, which are secure in
a stand-alone setting, must be carefully dealt with when used as subroutines
in higher level protocols. Kiraz and Schoenmakers [KS06] show that there are
actually several protocols in the literature (e.g., [Pin03, MNPS04, MF06]) where
the use of standard OT compromises the overall security of the protocol. Namely,
a malicious sender may put ‘bogus’ values instead of the correct messages, and
by doing so, compromise the privacy of the surrounding protocol. The use of
COT or VOT protocols may prevent such problems.

Our Contributions

We present a protocol that implements COT, assuming that a (2,2)-threshold
homomorphic cryptosystem has been setup before (as in, e.g., [CDN01]). This
setting also allows for multiple (sequential) runs of the COT protocol, amortizing
the initial cost of setting up the (2,2)-threshold cryptosystem. Our COT protocol
efficiently transfers bit strings. Using the random oracle model our protocol
achieves 2 rounds of interaction.

Compared to the COT protocol of [GMY04], which works for bits only, the
cost of transferring O(k)-bit strings (for security parameter k) using our pro-
tocol is comparable to the cost of transferring a single bit using the protocol
of [GMY04]. Compared to the 2-round VOT protocol of [JS07] for bit strings,
which can be turned into a 3-round COT protocol (see above), our protocol uses
one round less and is also computationally more efficient. However, [JS07] only
assumes a common reference string (CRS) containing an RSA modulus (among
other things), while we assume that a (2,2)-threshold homomorphic cryptosys-
tem has been setup.

The security analysis of our COT protocol is done using the simulation
paradigm, in the model described by [Lip03]. Although the privacy for both
parties is computational (as the commitments in our protocol are public key
encryptions), we show a simulation which produces a statistically indistinguish-
able view of the COT protocol for both parties. Hence, the COT protocol does
not divulge any information beyond what can be inferred from the encryptions
(which are used as computationally hiding commitments).

Organization of the Paper

The rest of the paper is as follows. In Section 2, we give some notation and
definitions which are used throughout the paper. In Section 3, we present our
COT protocol together with a proof of security. In Section 4, we discuss the
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complexity of our protocol and compare with previous solutions. In Section 5,
we discuss some applications which have some issues with the use of OT and
motivate COT instead and finally we conclude the paper.

2 Preliminaries

Threshold homomorphic cryptosystems. Our results apply to any threshold ho-
momorphic cryptosystem. Briefly, let E(m, r) denote the encryption of value m
using randomness r for a semantically secure public key encryption scheme. Of-
ten the randomness is omitted in the notation, writing E(m). A cryptosystem is
additively homomorphic if the product E(m1)E(m2) results in E(m1 +m2). As
a consequence, for any public constant c, E(m)c is an encryption whose plaintext
is cm.

In a (t, n)-threshold cryptosystem there are n parties, each of them holds a
share of the overall secret key. There is a public key which allows anyone to
encrypt messages. If at least t parties cooperate, any encryption can be suc-
cessfully decrypted, whereas any collusion of less than t parties cannot get any
information about the plaintext.

There are various instances of threshold homomorphic cryptosystems. The
most widely used are (based on) ElGamal or Paillier. Threshold homomorphic
ElGamal has the drawback of only allowing decryption of values belonging to a
relatively small set, for which it is feasible to compute discrete logs. On the other
hand, Paillier does not have this problem and allows decryption of encrypted
values in an arbitrarily large set (e.g., 1024-bit integers). However, the distributed
key generation protocol for threshold Paillier is very expensive compared to
that for threshold ElGamal. It is also possible to use an amalgam of ElGamal
and Paillier cryptosystems: the key generation protocol it is that of ElGamal,
while allowing decryption of full-size plaintexts like in Paillier. One drawback of
the latter is that the security of the cryptosystem relies on two computational
assumptions (see [DJ03]).

Σ-protocols. A Σ-protocol for a relation R = {(v;w)} is a 3-round protocol
between a prover and a verifier, where the prover acts first. Both parties have the
value v as common input, and the prover has a witness w as private input, where
(v;w) ∈ R. A Σ-protocol is a proof of knowledge for relation R which satisfies
special soundness and (special) honest-verifier zero-knowledge. See [CDS94] for
further details. Moreover, non-interactive Σ-proofs are easily obtained in the
random oracle model.

We will also use the fact that both for homomorphic ElGamal encryptions and
for Paillier encryptions, there are efficient Σ-protocols for the relation Renc =
{(e;m, r) : e = E(m, r)}, proving knowledge of the message m and randomness
r for a given encryption e = E(m, r).

(Non-Interactive) Public and Private Threshold Decryption. Given a ciphertext
in the (t, n)-threshold cryptosystem, at least t parties willing to decrypt, produce
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shares of the decryption, based on their respective shares of the secret key. This
information is broadcast and with this, everyone can simply recover the plaintext
by using a reconstruction algorithm. Putting this more formally, on ciphertext
c, at least t parties broadcast ci = Dski(c), where ski denotes the secret key
share for the i-th party. Later, everyone can perform m = R(c1, . . . , ct) where
c = E(m), where R denotes the public reconstruction algorithm.

In order to withstand malicious adversaries, parties have to prove that the
decryption share ci is correctly computed. For this, they use a Σ-protocol for
the relation Rtdec = {(ci, c; ski) : ci = Dski(c)}.

For the security of this process, and for later use in our security proofs, we
assume that if t − 1 parties are corrupted, then there is a simulator that on
inputs e = E(m, r), the message m, and the t − 1 shares of the private key
for the corrupted parties, it can produce a statistically indistinguishable view of
the decryption protocol. The concrete details on how to do this depend on the
specific threshold encryption scheme used. For examples, see [ST04, Section 2] for
the homomorphic threshold ElGamal, and [DJ01, Section 4.1] for the threshold
Paillier cryptosystem.

In our protocol, we consider a variant of the threshold decryption protocol,
the so-called private threshold decryption [CDN01, full version]. Here, the re-
quirement is that one of the t parties will be the only party who will recover
the secret. This is easily achieved: all t− 1 other parties follow the protocol, and
broadcast their shares (along with the proofs of correctness). The party who will
learn the plaintext proceeds with the decryption process privately, collects all
decryption shares from the t − 1 other parties, and privately reconstructs the
message. Note that the remaining parties will not get any information about this
message.

Secure multi-party computation from threshold homomorphic cryptosystems.
Cramer, Damg̊ard and Nielsen [CDN01] present a framework to build secure mul-
tiparty computation of any functionality that can be expressed as an arithmetic
circuit (or formulae). Roughly, on inputs e1 = E(m1) and e2 = E(m2) where
m1 and m2 may be unknown to everybody, parties can compute E(m1 + m2)
without interaction because of homomorphic properties. To compute E(m1m2)
parties must engage in a secure multiplication protocol. If in the latter case one
of the values, say m1, is private to one of the parties, this party can compute
e = em1

2 E(0, r) proving that this is the case. Clearly, e encrypts m1m2. This
protocol is usually referred to as private-multiplier (see, e.g., [ST04]). For later
use in the paper, the relation for the proof given in the private-multiplier gate
is denoted as Rpm = {(e1, e2, e;m1, r1, r) : e1 = E(m1, r1) ∧ e = em1

2 E(0, r)}.
For later use in the simulation of our protocols, given E(m1), E(m2) and

E(m1m2), the private-multiplier gate can be statistically simulated when there
are at most t−1 corrupted parties in a (t, n)-threshold homomorphic cryptosys-
tem. For details, see [CDN01, DJ01, ST04, DN03].

Encryptions as Commitments. A probabilistic public key encryption scheme
can be used as a non-interactive commitment scheme. One party commits to a
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message by encrypting it. The opening is done by disclosing the message and
the randomness used.

In this scenario we have to be careful: the holder of the private key can
always see the contents of any commitment of this type and, depending on the
encryption scheme used, this party might recover the randomness and therefore
virtually open any commitment.1 This compromises the hiding property for the
commiter that do not know the secret key.

We can resolve this issue with the following two possible actions: using the
encryption scheme as a commitment without allowing any of the parties to know
the secret key; while another suitable alternative could be to set up a threshold
encryption scenario. In this way, the ability to decrypt can be distributed in a
threshold fashion (possibly letting the threshold be the total number of parties).

Given a commitment e = E(m, r), its committer in this scenario is the party
that knows both the message m and the randomness r. Note that parties can
run private threshold homomorphic decryption w.r.t. one party to retrieve the
message behind e, but this not always allows the recipient to obtain the ran-
domness used in e (e.g., ElGamal), and therefore this party will not be able to
open e as a commitment. If party P is the committer of e = E(m, r) we denote
it by e = commitP (m, r).

Committed Oblivious Transfer. In 1-out-of-2 OT there are two parties: the sender
S, who inputs two private values s0 and s1; and the chooser C who has a selection
bit b. At the end, C receives the value sb. The main security requirement of any
protocol implementing OT is that after running the protocol S will not gain any
information about the C’s selection bit b; and C will be ignorant about the value
of s1−b.

Definition 1. A COT protocol is run between the parties S and C. At
the beginning there public commitments commitS(s0, r0), commitS(s1, r1), and
commitC(b, r). S inputs s0, s1 and r0, r1, while C inputs b, r. At the end of the
protocol, C receives sb and a fresh commitment commitC(sb, u) is publicly avail-
able. S learns nothing about b while C has no clue about s1−b (See Figure 1).

Now we point out the difference between COT and VOT in more detail. COT
and VOT are identical except that in VOT the commitment by the chooser
to its selected value sb is not required. Keeping this in mind, we notice that
[Cré90, CvdGT95, CD97, GMY04] are papers that present COT (of bits). In-
stead, in [CC00, JS07] only VOT protocols are presented. However, the differ-
ent use of these terms causes some confusion: Crépeau [Cré90] introduces COT
under the name of VOT, Jarecki and Shmatikov [JS07] present protocols for
VOT, while they use the term COT. In the latter paper, they present a UC-
secure VOT protocol (which for them is a COT), modifying the definition of the
ideal functionality for COT by Garay et al. [GMY04] to make it into VOT. It

1 For Paillier encryptions, one is able to recover both the plaintext and the randomness
used if one knows the private key. Whereas, for ElGamal encryptions recovering the
randomness is impossible under the DL assumption.
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Sender

Priv. Input: s0, s1, r0, r1

Priv. Output: ⊥

Common Input: commitC(b, r),
commitS(s0, r0), commitS(s1, r1)

Committed OT←→
Common Output: commitC(sb, u)

Chooser

Priv. Input: b, r

Priv. Output:
sb, u

Fig. 1. Committed Oblivious Transfer

is straightforward to see that in line with our definitions COT implies VOT by
just ignoring the output commitment. Vice versa, a VOT protocol can be turned
into a COT protocol by adding a round in which the chooser commits to the
received bit string and proves the validity of the commitment.

Security definitions. The main security obligation is to show that our pro-
tocol achieves the privacy requirements for COT. There are protocols in
the literature that achieve unconditional privacy for one of the parties (e.g.,
[NP01, Tze02, Lip03]) while the privacy for the other party on a computational
assumption. As our commitments are encryptions of the underlying threshold
public key cryptosystem, we can only give computational privacy to both par-
ties. However, our protocol achieves more than computational privacy: we show
that for any corrupted party (sender or chooser) there exists a simulator that
produces a view of the protocol which is statistically indistinguishable from the
view of the corrupted party executing a real instance of the protocol. This has
clear consequences in the framework of [CDN01]: a successful attacker to our
protocol is an attacker to the security of underlying cryptosystem without loss
in its success probability. This results in modular security proofs of higher level
protocols that use our COT as a subroutine.

To carry out such simulations, we proceed as follows. Assuming that one party
is corrupted, we build an efficient simulator that has access to the public input,
private secret shares of secret key and, as done in [Lip03], the private output in
the case that the chooser is corrupted. Besides, the simulator knows the public
output.

3 Committed Oblivious Transfer Protocol

In this section, we will present our COT protocol. A (2,2)-threshold homomor-
phic cryptosystem is assumed to be set up. We let E denote the encryption
algorithm of this cryptosystem, and as explained above, we also use E as a
non-interactive commitment scheme.

Let e0 = E(s0, r0) and e1 = E(s1, r1) be the commitments to the sender’s
input strings s0 and s1, and e = E(b, r) be the commitment to the chooser’s
selection bit b.
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Using the general approach to secure multiparty computation of [CDN01], the
COT protocol corresponds to the secure evaluation of an arithmetic circuit given
by t = b(s1 − s0) + s0 which clearly returns s0 if b = 0 and s1 when b = 1. This
approach is so general that even s0, s1 and b need not be known to any party.
Note that the output of the evaluation will be an encryption e′ = E(t) = E(sb). If
inputs (s0, s1) and/or b are known to the respective parties then one can securely
compute e′ using a private-multiplier gate (instead of a secure multiplication
gate), resulting in a more efficient protocol.

Once e′ is obtained, according to one of the COT requirements, only the
chooser must recover the plaintext. For this, we use private decryption, where
the chooser is the one who will learn the plaintext inside e′.

To complete the COT protocol, the chooser needs to commit to the received
value sb, and to prove that it does so correctly. In principle, this can be done using
some proofs of knowledge. However, we will use the fact that our commitments
are encryptions for a threshold cryptosystem: to prove that a fresh commitment
e′′ to output sb is correct, we observe that this proof equivalent to show that
e′′/e′ is an encryption of 0. The latter statement is proved by actually decrypting
e′′/e′.

As a final remark, we see that if the chooser starts producing e′, it turns out
that it has to wait for the decryption share of it from the sender, so that it later
can produce the fresh commitment as just explained. This results in at least 3
rounds of communication. However, if the sender starts, it produces e′ and at
the same time the decryption share for e′, which reduces the overall strategy
to at least 2 rounds of communication. In both cases, the computational cost
is actually the same. For this reason, we only go into the details of this second
approach, as it results in a more efficient way of doing COT.

2-Round COT Protocol
We now present our protocol for COT. This protocol has two rounds and it is
quite efficient compared to the state of the art. In the beginning of the protocol,
we take advantage of the fact that the values for the commitments e0, e1 and e
are known to the respective parties. The protocol is as follows.

Step 1. The sender produces e′ = E(b(s1 − s0) + s0) = e(s1−s0) · e0 · E(0, r′)
and the Σ-proof for relation Rpm on (e, e1/e0, e′/e0; s1 − s0, r1 − r0, r

′). The
sender also produces its decryption share sS of e′, along with the Σ-proof
for relation Rtdec on (e′, sS ; skS).

Step 2. After checking the two proofs given by the sender, and if they pass,
the chooser then produces its corresponding decryption share for e′, denoted
as sC . Combining sS and sC , the chooser gets sb. Immediately, the chooser
produces a fresh encryption e′′ = E(sb, u) for a fresh random u, and generates
its decryption share for e′′/e′, denoted as ŝC . Then, e′′ and ŝC are sent along
with the Σ-proofs for Renc and Rtdec on inputs (e′′; sb, u) and (e′′/e′, ŝC ; skC)
respectively.

Step 3. Finally, upon receiving e′′, the sender produces its decryption share for
e′′/e′, denoted as ŝS . This is combined with ŝC to check whether the resulting
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decrypted value is 0. If so, the sender accepts e′′ as a valid commitment for
the chooser’s output. Otherwise, the sender rejects.

The protocol is sketched in Figure 2.

Committed OT of bit strings

Sender Chooser
Private Input Common Input, Private Input
s0, s1, , r0, r1, skS e = E(b, r), b, r, skC

e0 = E(s0, r0), e1 = E(s1, r1)

e′ = es1−s0 · e0 · E(0)
sS = DskS (e′)

−−−−−−
e′, sS + proofs
−−−−−−−−−−−−−−−−−→

sC = DskC (e′), sb = R(sS, sC),
e′′ = E(sb, u) for random u,

ŝC = DskC (e′′/e′)

←−−−−−−
e′′, ŝC + proof
−−−−−−−−−−−−−−−−

ŝS = DskS (e′′/e′)

0
?
= R(ŝS, ŝC)

Private Output: ⊥ Common Output: Private Output: sb, u
e′′

Fig. 2. Sketch of the committed OT protocol

The value sb denotes the output of the chooser after privately decrypting
e′. When this value has been computed, a fresh commitment to sb (denoted as
e′′) by the chooser has to be sent in order to fulfill the COT requirement that
the chooser’s output must be committed. Notice here that without the fresh
commitment to sb the protocol fulfill the VOT requirement in one round only.

Security Analysis
For the security analysis, we are going to prove that this protocol fulfills the
privacy requirements for COT. We are going to show that given a party is cor-
rupted, there exists a simulator that can produce a view which is statistically
indistinguishable from the view of that party interacting with the other honest
party.

Before starting the proof we make some remarks in the security model to
make the proof precise. As we mentioned earlier, before the simulation is run
the simulator already knows the shares of the secret key of the corrupted party.
The reason is that the threshold cryptosystem is set up before the protocol starts,
and therefore we assume that the simulator extracts this information when the
distributed key generation is run.
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Also, in case the chooser is corrupted, we use the approach in [Lip03]: the
simulator will be given access to the received value by the chooser. From this and
public information, we construct a simulator that produces an indistinguishable
view for the adversary w.r.t. the view in the real execution.

Finally, we remind that the protocol gives computational privacy to both
parties, the sender and the chooser, because of the semantic security of the
underlying cryptosystem. Going a bit further than computational privacy, we
now show that the protocol is simulatable for both parties and those simulations
produce views which are statistically indistinguishable from the views in the real
protocol executions.

Theorem 1. On the sender’s inputs s0, s1 (and randomness r0 and r1), the
chooser’s private selection bit b (and randomness r), where public commitments
to the parties’ inputs e0 = E(s0, r0), e1 = E(s1, r1), and e = E(b, r) are avail-
able, the COT protocol privately gives sb (and a fresh randomness u) to the
chooser, along with a public commitment e′′ = E(sb, u).

Proof. As we argued before, we assume that one of the parties is corrupted.
Based on public information besides of its private decryption share, we show a
simulation which produces a view to the adversary that is statistically indistin-
guishable from the view in the real protocol execution.

In all cases, a set of valid public inputs is available: e is a commitment to the
chooser’s selection bit, and e0, e1 are respective commitments to the sender’s
inputs. Also, the simulator is assumed to get the public output commitment e′′

which is a valid commitment to chooser’s received value.

Case 1- The chooser is corrupted. We first prove the security for the case that the
chooser is corrupted. The simulator has the chooser’s private key share skC , and
received value sb, apart from the public commitments. From this information,
the simulator constructs a view for the chooser which is statistically close to the
one when interacting with the honest sender.

The simulator proceeds as follows:

1. The simulator computes e′ = e′′ ·E(0). The value e′ together with a simula-
tion of the private-multiplier gate (over multiplicands e and e1/e0 and result
e′/e0) are output.

2. At the same time, the decryption share sS can be simulated given e′, its
plaintext (which is sb) and the share of private key skC of the chooser. All
proofs at this stage are also simulated.

This completes the simulation for the malicious chooser. The transcript is consis-
tent and statistically indistinguishable from the chooser’s view when interacting
with the honest sender.

Case 2- The sender is corrupted. We next prove the security for the case that the
sender is corrupted. The simulator has only sender’s private key share skS and
all public information as described above. From this information, the simulator
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constructs a view for the sender which is statistically close to the one when
interacting with the honest chooser.

The simulator proceeds as follows:

1. The simulator waits until the sender produces the encryption e′ and the
decryption share for e′. The simulator checks all the proofs as if the honest
chooser would check in the real protocol execution. If all proofs are passed,
the simulator goes on, otherwise it aborts.

2. Now, simulator prepares e′′ as e′ · E(0) and outputs it along with a simu-
lated proof of knowledge. Also, it simulates ŝC calling the simulator to the
decryption process on inputs e′′/e′, plaintext 0 and the sender’s secret key
share skS .

This completes the simulation for the malicious sender. The transcript is consis-
tent and statistically indistinguishable from the sender’s view when interacting
with the honest receiver. ��

4 Complexity Analysis and Comparison

Our protocol involves only a constant computational, communication and round
complexities. When studied in similar frameworks, our protocols are as efficient
as the COT protocol by Garay et al. [GMY04] which is the most efficient one up
to now. We stress that the protocol of Garay et al. works in a stronger model,
since they are interested in the UC framework. We, instead, will adapt their
protocol to our framework to be able to carry out a comparison.

In the following, we present the precise description for the complexity of our
protocol. For a concrete result we use (2,2)-threshold ElGamal cryptosystem
by considering offline computations. In the protocol by Garay et al. they need
Ω-protocols for the proofs of knowledge. For simplicity, we trimmed them down
to the simpler Σ-protocols. This is done to make a reasonable comparison.

COT protocol by Garay et al. Let’s roughly sketch the protocol idea. The CRS
consists of the pair (g, h), where nobody knows the discrete log x of h to the base
g, i.e. h = gx. The protocol uses Pedersen commitments, and so, let E0 = gr0hs0

and E1 = gr1hs1 denote the commitment to sender’s inputs s0 and s1. Also,
E = grhb is the commitment to chooser’s input b. The protocol has the following
two main steps:

1. The sender “re-encrypts” E0 and E1 under the ‘keys’ E and E/h respec-
tively. Denote E′

0 and E′
1 the resulting encryptions. Note that Eb will be

re-encrypted with the key gr. It also proves that this is done correctly.
2. The chooser can only “decrypt” the message in E′

b as it knows the secret
exponent r, recovering sb. On the other hand, the chooser cannot decrypt
E′
1−b unless the discrete-log of h to the base g is known. To finish, the chooser

has to recommit to the received value sb and prove that this is the case.
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See [GMY04] for more details. In the first step, for the reencryption, 4 expo-
nentiations are computed by the sender (2 of them can be off-line). The proofs
at that step cost 16 exponentiations (8 of them can be off-line). As for the sec-
ond step, the chooser needs only 1 on-line exponentiation to retrieve the chosen
value. To finish, the chooser computes a fresh commitment which costs 1 off-line
exponentiation. The proof of knowledge at the end costs 8 exponentiations (4
can be off-line). In total, there are 15 on-line and 15 off-line exponentiations.

VOT by Jarecki and Shmatikov. We now just sketch the VOT protocol in [JS07].
The input commitments are encryptions under a homomorphic public key cryp-
tosystem (the public key is part of the CRS). The chooser first sends a new public
key together with the encryption of its selection bit under this new cryptosystem,
proving that this is done correctly. Later, the sender encrypts its inputs under
this new public key, combining them with the encryption for the selection bit.
Finally, the chooser can decrypt both ciphertexts, but only one of them contains
the selected value, and the other one is random.

To convert it into COT, the chooser must recommit to its received value,
producing a proof that the value encrypted is consistent with previous commit-
ments. This protocol results in 3 rounds.

This scheme virtually works for any homomorphic encryption. When instan-
tiated to additively homomorphic ElGamal, for the sake of our comparison, the
protocol is slightly less efficient than that of [GMY04], around 17 on-line and 16
off-line exponentiations (mainly due to the generation of the new cryptosystem,
the recommitment of the selection bit and the respective proofs of knowledge).
Meanwhile, for the VOT protocol, the cost is 13 and 10 on-line and off-line
exponentiations, resp.

Our COT protocol. Now we present the computational cost for our protocol
in the case of (2,2)-threshold ElGamal. In Table 1 we study the computational
complexity of the building blocks used in our protocol. For the private-multiplier
gate, we include the cost of producing the output plus the Σ-proof for relation
Rpm. In the case of the private threshold decryption, we include the costs for
generation of the decryption shares and one Σ-proof for Rtdec. And finally, we
consider the recommitment at the last step. Concretely, in the case of e′′, chooser
has to encrypt to the received value plus the Σ-proof for the knowledge of the
randomness used in that encryption. This suffices as if chooser passes this proof
and e′/e′′ decrypts to 0, it implies it knows the plaintext in e′′. We divide the
complexities analysis into on-line and off-line computations.

To get the total number of exponentiations, we note that our protocol re-
quires one private-multiplier gate at the first step (to produce e′), two private
threshold decryptions (for decrypting e′ and e′′/e′) and one encryption at the
last step (to generate e′′). Therefore, we have in total 12 on-line and 12 off-line
exponentiations.

Observe that the way of proving that the fresh commitment is correct in
our protocol is different (yet equally efficient as the proof in [GMY04]). The
protocol in [GMY04] needs 9 exponentiations to recommit and prove. Our needs
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Table 1. Number of exponentiations of building blocks used in our COT protocol for
(2,2)-threshold ElGamal setting

Online Offline
Private-multiplier gate 3 5

Private threshold decryption 4 2

Recommitment 1 3

9 exponentiations as well: produce e′′ and one threshold decryption. technique
we use is a little bit different from the general zero knowledge proofs.

If we restrict ourselves to a VOT protocol, removing the recommitment step,
we can see our protocol is really much more efficient than the current protocols
in the state-of-the-art. It certainly requires 7 on-line and 7 off-line exponentia-
tions (against 11 and 10 resp. for Garay et al.’s protocol) and also in only one
round of interaction. Ours easily generalizes to any (2,2)-threshold homomorphic
cryptosystem at a cost of a distributed key generation protocol at the beginning.

5 Concluding Remarks

As we mentioned before there is a generic attack that can be produced when
oblivious transfer is used as a building block for higher level protocols implemen-
tations. Kiraz and Schoenmakers [KS06] present that there are several protocols
for secure two-party computation using Yao’s garbled circuit in the presence of
malicious adversaries [Pin03, MNPS04, MF06] which have a security issue with
the use of standard OT, and COT is presented as a direct solution. Generally, the
problem arises due to the fact that there is no connection between the interme-
diate outputs in the protocol to the ones that are input for the OT protocols. We
note that COT protocols (or any other combination of OT and commitments)
may be therefore better to use within larger protocols assuming the correct-
ness of the values inside the commitments. This correctness is controlled by the
surrounding protocol and not by the COT protocol.

Moreover, there are a number of protocols for standard OT over bit strings
which are profitable for many applications, and therefore, we stress that our COT
protocol may also result in efficient implementations since it works for bit strings.
Also we stress that once OT is used as a subprotocol in the semi-honest model, a
COT protocol might be a good candidate to extend the higher-level protocol to
the malicious case. Of course other solutions may be applicable though, but that
would imply, in most of the cases, a redesign of the protocol being considered.

Finally, we highlight that our setting is quite different from the previous OT
protocols. We use a (2, 2)-threshold setting in our protocol and of course, one
might easily extend it to (2, n)-threshold cryptosystem. In particular it might
be interesting the case n = 3 since still the adversary consists of only one party.
The setting to adopt might clearly depend on the applications.
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As further work, it could be interesting to present a protocol for committed
oblivious transfer for bit strings in the universal composable framework and in
the non-erasure model.
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Abstract. A certified email protocol, also known as a non-repudiation
protocol, allows a message to be exchanged for an acknowledgement of re-
ception in a fair manner: a sender Alice sends a message to a receiver Bob
if and only if Alice receives a receipt from Bob. In this paper, we present
a novel approach to combine the authorized Diffie-Hellman key agree-
ment protocol with a modified Schnorr signature effectively to construct
our certified email protocol. Our proposed certified email protocol is an
optimistic protocol, with an off-line trusted third party being involved
only when a party cheats or the communication channel is interrupted
during exchange. We also compare our protocol with other optimistic
certified email protocols, and conclude that our certified email protocol
is the most efficient optimistic certified email protocol.

Keywords: Certified Email Protocol, Fair Exchange Protocol, D Opti-
mistic Fair Exchange Protocol.

1 Introduction

We all have the following experience: when a registered letter arrives, we receive
the letter if and only if we have signed an acknowledgement of reception. The
two actions, i.e., signing an acknowledgement and receiving the letter occur
simultaneously. In an electronically connected world, emails are used widely.
Most people prefer emails to snail mails in communicating with others due to
convenience and fast delivery offered by the email. An email system should also
provide the same function as the registered letter that a receiver has to sign an
acknowledgement of reception before a registered email can be read. Unlike the
case of registered letters, the two actions, i.e., signing and receiving, cannot occur
simultaneously in an email system due to its distributed nature. The protocols
used in an email system, or any protocols in general, are asynchronous by nature.
How can we provide the “registered letter” service in a distributed environment?
The answer is the certified email protocol, also known as the non-repudiation
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protocol1. A certified email protocol enables a fair exchange of a message and
an undeniable receipt between two untrusted parties over a network such as the
Internet.

In addition to certified emails, a certified email protocol can also be used in
many other applications. One application is to secure the itinerary of a mobile
agent [39], where a certified email protocol is applied between two adjacent hosts
when a mobile agent passes from one host to the other. The non-deniable message
and receipt offered by a certified email protocol are used to identify the origin of
an attack if the itinerary of the mobile agent is altered. Another application is
to encourage people to share or propagate contents such as self-created movies
or advertisements with others, where a certified email protocol is used to assure
that users who share contents with others would get awards by redeeming the
receipts from content receivers.

Due to its usefulness, the certified email protocol has been studied widely
by the cryptography research community. In fact, the problem addressed by the
certified email protocol is essentially a subset of the problem addressed by the fair
exchange protocol, where the exchanged items are not necessarily restricted to
messages and receipts as in certified email protocols, yet other digital items can
also be exchanged in the fair exchange protocol. For example, both parties can
exchange signatures signed by each individual party in a fair exchange protocol.
As a result, most of the techniques used in fair exchange protocols can also be
used in certified email protocols.

Depending on the availability and setting of a Trusted Third Party (TTP),
fair exchanges can be classified into the following four types: (1) without a TTP,
(2) with an inline TTP, (3) with an online TTP, and (4) with an off-line TTP. For
the first type of fair exchanges, Even and Yacobi [23] proved as early as in 1980
that it is impossible to realize fairness in a deterministic two-party fair exchange
protocol. Existing protocols can provide only partial fairness: computational fair-
ness [18,21,24] or probabilistic fairness [12,27]. These protocols are, however, too
complex and inefficient to be applied in practical applications. For the second
type, the TTP acts as an intermediary between the sender and the receiver, and
the entire message is sent through the TTP [15,16]. An inline TTP can provide
full fairness since all exchanged messages are fully controlled by the TTP. The
TTP, however, may become a performance bottleneck, especially when many
large messages have to forward at the same time. An online TTP is similar to an
inline TTP, where the TTP must be available for the entire lifetime of the ex-
change. In such a setting, the TTP does not need to forward the entire message.
Only the signaling information such as the cryptographic key is processed and
forwarded by the TTP. For the last type, also known as the optimistic protocol,
the TTP is involved only if one of the parties behaves maliciously or the com-
munication channel is interrupted during execution of the exchange protocol.

1 Some researchers [35, 36] think that these two protocols are different. If we do not
consider message’s confidentiality, both protocols can be considered as the same since
they both address the same problem: exchanging a message and a receipt in a fair
manner.
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This property is very desirable and practical in many applications, including
the distributed environment mentioned above. The last type, therefore, has at-
tracted more researchers’ attention than the other three types. Up to now, many
techniques have been proposed to address the fourth type of fair exchanges, such
as the escrow and verifiable escrow scheme [5], the verifiable encryption [10, 1],
the verifiable confirmation of signatures [17], the convertible signatures [11,28],
the designated verifier proofs [25], the cross validation [37, 38], the gradational
signature [32], the sequential two-party multi-signature scheme [31], the veri-
fiable and recoverable encrypted signature [29], and the verifiably committed
signatures [20].

As mentioned before, most techniques used in a fair exchange protocol can
also be used in a certified email protocol. There also exist many generic certified
email protocols [34, 35, 36], where generic encryption and signature primitives
are used. These generic certified email protocols usually utilize the following
approach: first encrypting a message m by a symmetric encryption scheme, then
encrypting the key used in the symmetric encryption by a public key encryption
scheme with the TTP’s public key, and finally signing the resulting ciphertext by
a signature scheme with the sender Alice’s private key. When the receiver Bob
receives the signature, he first checks validity of the received signature. If it is
valid, he sends a receipt to Alice to indicate that Bob has received the message.
Bob’s interest is protected since if Alice refuses to reveal the exchanged message
m, the TTP Charlie can reveal the message m for him.

The most efficient existing certified email protocol with an off-line TTP is,
to the best of our knowledge, the scheme proposed in [35, 36]. In this paper, we
propose a novel and more efficient certified email protocol with an off-line TTP.
Our scheme uses the technique of authorized key agreement. We believe that we
are the first in applying this technique in a fair exchange protocol.

1.1 Our Contribution

The protocol to be proposed in the paper is a certified email protocol with an
off-line TTP. The major contribution of this paper is that a novel approach is
used to encrypt a message in a certified email protocol. Unlike other certified
email protocols with an off-line TTP, which use the TTP’s public key to encrypt
a randomly selected message encryption key so that the TTP can extract the
message encryption key to reveal the message in the execution of the dispute
protocol, our protocol encrypts a message with a key shared between the sender
and the TTP, yet without involving the TTP during the exchange. The step to
apply a public key encryption scheme to encrypt the message encryption key
used in other certified email protocols is removed in our protocol, resulting in a
more efficient protocol.

The well-known authorized Diffie-Hellman key agreement [19] is used in our
scheme to achieve the goal to share the message encryption key between the
sender and the TTP. Like the protocols proposed in [34, 35,36]2, our protocol is
2 Two fair exchange protocols are proposed in [34]. One is with an online TTP, and

the other with an off-line TTP. In this paper, we consider only the off-line protocol.
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fair and optimistic. Compared with the existing certified email protocols [2, 4,
34, 32, 35, 36], our protocol enjoys the following properties:

Fairness: Like other certified email protocols, our protocol guarantees fairness,
i.e., a malicious party cannot gain any advantage over the other party in
exchange of a message and a receipt. Detailed security analysis and discussion
are given in Section 3.

Optimism: Compared to the scheme proposed in [2], the TTP in our protocol
is involved only when one party conducts malicious behaviors or the commu-
nication channel is interrupted during exchange. In other words, our protocol
is an optimistic protocol.

TTP’s Statelessness: The TTP does not need to store any state information
in executing our protocol to deal with disputes between the two parties.

High Performance: Our protocol has the smallest computational and commu-
nicational cost among all certified email protocols. Comparison with typical
existing certified email protocols is given in Section 4.

Note that we do not deal with the subtle issue of timely termination addressed
by [5, 6]. We would like to point out that the techniques used in [5, 6] to deal
with this subtle issue can be added easily to our protocol to resolve this problem.
Furthermore, we assume that there exist reliable channels between the users and
the TTP.

1.2 Organization

The rest of this paper is organized as follows. In Section 2 our novel certified
email protocol is described in detail, followed by the discussion of security of
our protocol in Section 3. Comparison of our protocol with the certified email
protocols proposed in schemes in [35, 36] is given in Section 4. We conclude the
paper in Section 5.

2 Our Proposed Protocol

This paper focuses on certified email protocols without considering confiden-
tiality of the message m. Confidentiality can be achieved easily by applying an
encryption scheme to the message m if needed. Before describing our protocol,
we would like to describe a modified Schnorr signature scheme [7] which will be
used in our certified email protocol.

2.1 Modified Schnorr Signature Scheme

The following signature scheme is based on Schnorr signature scheme [40] which
is proved to be secure against the adaptively chosen message attack in the ran-
dom oracle model [14] with the discrete logarithm assumption. It consists of the
following three algorithms: Setup, Sign, and Verify.

Setup. It takes as input a security parameter 1k and outputs a public key
(G, q, g,H(·), y) and a secret key x, where q is a large prime, G is a finite
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cyclic group with the generator g of order q, H(·) is a cryptographic hash
function: {0, 1}∗ → Z∗

q , and y = gx ∈ G. M is the domain of messages.
Sign. To sign a messagem ∈ M, the following operations are applied: (1) choose

a random r ∈ Z∗
q , (2) compute R = gr ∈ G, and (3) set the signature to be

σ = (R, s), where s = r + xH(m||R||y) mod q.
Verify. To verify a signature σ for message m, the verifier checks gs ?=

RyH(m||R||y) ∈ G. If the equation holds, the signature is valid and outputs
b = 1; otherwise, the signature is invalid and outputs b = 0.

2.2 Our Proposed Protocol

Our certified email protocol consists of the following three sub-protocols: the
setup sub-protocol, the exchange sub-protocol, and the dispute sub-
protocol. Assume that Alice is the sender, Bob is the receiver, and Charlie
is the TTP. We also assume that the public key of the Certification Author-
ity (CA) and the three parties are known to everyone. Let m denote the sent
message and let σB denote the receipt.

Setup Sub-protocol. In our certified email protocol, first choose the system
parameters (q,G, g), where q is a large prime, and G is a gap Diffie-Hellman
(GDH) group3 with the generator g whose order is q. Then Charlie select his
random private key xc ∈ Z∗

q , and computes and publishes the corresponding
public key yc = gxc ∈ G.

Alice also selects her random private key xa ∈ Z∗
q , and computes the corre-

sponding public key ya = gxa ∈ G. But, she registers her public key and her
system parameter with a CA to get her certificate CA which binds her identity
IDA with the corresponding public key (q,G, g, ya).

Exchange Sub-protocol. In this protocol, Alice sends to Bob a message m
with the message description Dscm

4, and receives a receipt from Bob. The

3 We call a finite cyclic group G, with the generator g whose order is prime q, is
a gap Diffie-Hellman (GDH) group if the following first problem can be solved in
polynomial time but no p.p.t. algorithm can solve the following second problem with
non-negligible advantage over random guess within polynomial time [30].

Decisional Diffie-Hellman Problem. Given (g, ga, gb, gc) ∈ G ∗ G ∗ G ∗ G, decide
whether c = ab ∈ Z∗

q , where a, b, c are three random numbers in Z∗
q . If c = ab ∈ Z∗

q ,
then (g, ga, gb, gc) is a Decisional Diffie-Hellman (DDH) tuple.

Computational Diffie-Hellman Problem. Given (g, ga, gb) ∈ G ∗ G ∗ G, compute
gab ∈ G, where a, b are two random numbers in Z∗

q .

4 The description Dscm will enable a human being to verify a message. A simple
description is the hash value of the message. The actual description depends on the
application. When used in the application to encourage sharing multimedia, Dscm

may be a description of the multimedia content such as its title, creator, etc. We
note that knowledge of the description Dscm does not disclose its message m.
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message description Dscm is used to check if a decrypted message matches its
description. In the following description, (Ek(·),Dk(·)) is a pair of symmetric en-
cryption and decryption operations with the encryption key k. H(·), H1(·) and
H2(·) are cryptographic hash functions.

1. Alice first chooses a random number r ∈R Z∗
q , and computes

R1 = gr ∈ G, R2 = yr
c ∈ G, R′ = H(R2), k = H1(R2),

C = Ek(m), sA = r+xaH2(C||Dscm||IDA||IDB||IDC ||R1||R′||ya) mod q.

Alice then sends (CA, R1, R
′, C,Dscm, sA) to Bob, where CA is Alice’s cer-

tificate obtained with the setup sub-protocol.
2. On receiving (CA, R1, R

′, C,Dscm, sA) from Alice, Bob first validates Alice’s
certificate CA, and then checks if the following equation holds,

gsA
?= R1y

H2(C||Dscm||IDA||IDB||IDC ||R1||R′||ya)
a ∈ G.

If both checks are fine, Bob sends to Alice his signature σB on

(R1, R
′, C,Dscm, sA, IDA, IDB, IDC).

3. Upon receiving σB from Bob, Alice first validates Bob’s signature σB. If
passes, Alice sends R2 to Bob.

4. Upon receiving R2, Bob computes the key k = H1(R2) and uses it to decrypt
the encrypted message C previously received to obtain the wanted message
m = DH1(R2)(C). The decrypted message m is considered as valid if and
only if m does match the message description Dscm previously received. If
he does not receive R2, or R′ �= H(R2), or the decrypted message m does
not match its description Dscm, Bob can invoke the dispute protocol.

Remark 2.1. R1 will be used as a part of the key material in the Diffie-Hellman
key agreement in the dispute protocol to be described later, and R2 is the
resulting key of the Diffie-Hellman key agreement. (R1, sA) is in fact a signature
on (C,R′, Dscm, IDA, IDB, IDC) corresponding to the public key ya obtained
by using the modified Schnorr signature scheme. Bob’s signature σB in Step 2
above can be any type of signature.

Alice can use receipt σB she receives from Bob to prove to another person John
that Bob has received the message m from her with the following procedure:

– Alice sends John (σB , R1, R
′, C,Dscm, sA, CA, IDB, IDC ,m,R2)

– John checks whether
• m is consistent with Dscm,
• σB , sA, CA are valid,
• C = EH1(R2)(m),
• R′ = H(R2),
• (g,R1, yc, R2) is a Decisional Diffie-Hellman (DDH) tuple.
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If all the above checks pass, John is convinced that Bob indeed receives the
message m from Alice.

Our protocol uses a gap Diffie-Hellman group. Alice can determine whether
(g,R1, yc, R2) is a DDH tuple or not by using some special algorithms such as
pairing. In some applications, Alice may need to prove only to the TTP that Bob
has received message m, i.e., John is always the TTP. In this case, the protocol
is the same as described above except that the gap Diffie-Hellman group can
be replaced with a finite cyclic group whose CDH problem is computationally
hard5, and we do not need to use gap Diffie-Hellman group’s algorithms such as
pairing to solve the DDH problem. Since the TTP already knows its own secret
key xc, TTP can determine whether (g,R1, yc, R2) is a DDH tuple by checking
whether R2 = Rxc

1 holds.

Dispute Sub-protocol. If Bob has sent his signature σB to Alice but has not
received R2 or the received R2 from Alice is invalid6, he can invoke the dispute
sub-protocol and sends to Charlie (CA, R1, R

′, C,Dscm, IDA, IDB, IDC , sA, σB).
Upon receiving the data from Bob, Charlie performs the following operations:

1. Charlie first validates the received data. This step is the same as the data
validation in Steps 2 and 3 in the exchange sub-protocol. Charlie aborts if
the validation fails. Otherwise, he continues.

2. Charlie computes R2 = Rxc
1 ∈ G, and applies the decryption operation to

obtain the message m(= DH1(R2)(C)). If m does match its description Dscm
and R′ = H(R2), Charlie sends R2 to Bob and σB to Alice.

Remark 2.2. If m does match its description Dscm, or R′ �= H(R2), Alice cannot
use Bob’s receipt to prove to others that Bob has received the message m from
her since the data validation described after Remark 2.1 would fail.

3 Security Discussion

Security of our certified email protocol is analyzed with the following three lem-
mas:

Lemma 3.1. The modified Schnorr signature scheme is secure against the adap-
tively chosen message attack with the discrete logarithm (DL) assumption in
random oracle model and public key substitute attack.

Proof. Compared with the original Schnorr signature scheme [40], the only differ-
ence in the modified Schnorr signature scheme is H(m||R||y) instead ofH(m||R).
In random oracle model [14], however, both hash oracles can choose to respond
with the same output to the query to H(m||R||y) on input (m,R, y) and the

5 Note that a gap Diffie-Hellman group is always a CDH-hard group but not vice versa.
6 A received R2 is considered as invalid if the decrypted message m does not match its

description Dscm, or R′ 	= H(R2).
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query to H(m||R) on input (m,R). Since the Schnorr signature scheme is proved
to be secure against the adaptively chosen message attack with the DL assump-
tion in random oracle model [33], we conclude that the modified Schnorr sig-
nature scheme is also secure against the adaptively chosen message attack in
random oracle model. According to the security analysis of [7] [Section 5], on
the other hand, the modified Schnorr signature scheme can resist the public key
substitute attack, i.e., there exists only a negligible possibility that a different
public key can be found to satisfy the signature corresponding to a specified
public key.

As a result, we conclude that the lemma holds. ��

Lemma 3.2. Assume that the Computational Diffie-Hellman (CDH) assump-
tion holds, and the hash function H2(·) is a secure one-way hash function, then
only Alice and Charlie can deduce the message encryption key k which is used
to encrypt the message m in our certified email protocol.

Proof. According to Lemma 3.1, only Alice can produce a valid signature (R1, σ).
In other words, R1 is guaranteed to be generated by Alice, i.e., no one can
impersonate Alice to send a valid R1. Since the hash function H2(·) is a secure
one-way hash function, the only way to deduce the message encryption key k is
to deduce the value of R2. The CDH assumption implies that it is impossible
to deduce R2 from R1 and ys. Therefore, no one except the person who knows
r or xs can deduce the value of k. This means that only Alice and Charlie can
deduce the message encryption key k. ��

Lemma 3.3. Our certified email protocol can provide fairness.

Proof. Based on the description presented in the above section, when the ex-
change sub-protocol is executed normally, i.e., when Alice and Bob are honest
and the communication channel works, Bob receives the message sent by Alice,
Alice receives a receipt from Bob, and Charlie is not involved. What’s more, if
Alice and Bob are both honest, but the communication channel does not work
during the execution of the exchange sub-protocol; Alice can invoke the dispute
protocol to ask for TTP’s help to complete the exchange. Therefore, fairness
holds in these two cases. In other cases, we are going to show that our proposed
protocol can also provide fairness, i.e., Alice and Bob cannot take advantage over
the other in the process of execution of our protocol even if he or she behaves
maliciously. Those cases are classified into the following three cases: (1) Alice is
honest, but Bob is malicious; (2) Bob is honest, but Alice is malicious, and (3)
Alice and Bob are both malicious.

Case 1: Alice is honest, but Bob is malicious. In this case, Bob aims to obtain
the message m without sending his valid receipt σB to Alice. In our certified
email protocol, Bob may cheat in Step 2 of the exchange sub-protocol by
not sending his valid receipt to Alice. According to our protocol, however,
Alice will not send the value R2 to Bob in this situation. Bob can obtain R2

from Charlie by executing the dispute sub-protocol. But in this case, he
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has to send his valid receipt to Charlie before Charlie forwards R2 to Alice.
Charlie also forwards the receipt to Alice in the dispute sub-protocol.
Furthermore, according to Lemma 3.1, only Alice can generate a valid sig-
nature (R1, σ). In conclusion, if Bob wants to receive m, he has to send his
valid receipt to Alice, directly or indirectly. Our protocol can provide fairness
in this case.

Case 2: Bob is honest, but Alice is malicious. In this case, Alice aims to obtain
Bob’s receipt σB without sending the message m to Bob, or to make Charlie
abort in dispute sub-protocol. In our protocol, Alice may cheat in two
steps: Step 1 and Step 3 of the exchange sub-protocol. In the former one,
if Alice does not send the authorized data7 (CA, R1, R

′, Dscm, sA) to Bob,
Bob will not send his valid receipt to Alice. On the other hand, if Alice does
not send the right8 (R1, R

′) to Bob, but Bob would send the valid receipt to
Alice. Alice cannot use the received receipt from Bob to prove to others that
Bob has received the right message m from her, which means the receipt
Alice received is useless. Therefore Alice has to send the authorized and
right (CA, R1, R

′, Dscm, sA) to Bob in this step. In the latter one, if Alice
sends invalid R2 to Bob or does not sends R2 to Bob, Bob can invoke the
dispute sub-protocol to get m. If the received message m does not match its
description, the receipt Alice obtains from Bob is useless since she cannot
prove to others that Bob has received the right message m from her. In
conclusion, our protocol can provide fairness in this case too.

As a result, we finish our proof. ��

4 Efficiency

In this section, we compare our proposed protocol with others. To the best of our
knowledge, all the existing optimistic certified email protocols are based on pub-
lic key cryptography technologies. Public key cryptography takes much longer
time than symmetric key cryptography or secure hash functions. In public key
cryptography, the most time-consuming operation is the modular exponentiation
calculation. In fact, the ratio of the time taken for a modular exponentiation
operation to the time taken for a single modular multiplication is linearly pro-
portional to the exponent’s bit length [8]. As a result, we ignore single modular
multiplications and other non-public key cryptography algorithms such as sym-
metric encryption, symmetric decryption, and hash function in our theoretical
analysis of our protocol’s efficiency and comparison with other certified email
protocols.

To the best of our knowledge, the two protocols proposed by Wang [35,36] are
the most efficient certified email protocols previously proposed with an off-line
TTP. One protocol is based on the ElGamal scheme [22] and the Schnorr scheme

7 Authorized data means others can make sure that the data is from Alice.
8 Right means Charlie and Alice would result in the same symmetric encryption key

k, and R′ = H(R2).
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Table 1. Comparison of time cost of our proposed protocol with Wang’s

Wan05a Wan05b Ours

Step 1 of Exchange 3EXP 1EXPRSA + 1EVRSA 2EXP

Step 2 of Exchange 2EXP + 1SGNB
a 1EVRSA + 1SGNB 2EXP + 1SGNB

Step 3 of Exchange 1V ERB
b 1V ERB 1V ERB

Total of 5EXP+ 1EXPRSA + 2EVRSA+ 4EXP+
Exchange 1SGNB + 1V ERB 1SGNB + 1V ERB 1SGNB + 1V ERB

Prove to Other 2EXP 1EVRSA 1Pairingc (or 1EXP d)

Dispute 3EXP + 1V ERB 1EXPRSA + 1EVRSA + 1V ERB 3EXP + 1V ERB

a Time taken by Bob’s signature algorithm.
b Time taken by Bob’s verfication algorithm.
c Time taken by a pairing computation.
d In this case, Alice can only prove to Charlie.

[40] (denoted as Wan05a). The other is based on RSA (denoted as Wan05b). As
a result, our protocol is compared with only these two protocols in efficiency
comparison. We use EXP to denote the time taken by one modular exponen-
tiation operation that ElGamal encryption scheme or the Schnorr scheme need.
EXPRSA denotes the time taken by one modular exponentiation operation that
RSA signature or RSA decryption needs, and EVRSA denotes the time taken by
one modular exponentiation operation that RSA verification or RSA encryption
needs. We assume that our proposed protocol uses the same group G as the
group in Wan05a, no matter it is a multiplication group of a finite field or a finite
rational point group over an elliptic curve.

Table 1 shows the time cost of our proposed protocol as well as Wang’s pro-
tocols. The time costs in the setup phase and the certificate verification process
are ignored. From the table, our protocol saves one modular exponentiation op-
eration in the exchange sub-protocol as compared with Wan05a. If Alice needs
to prove to only the TTP that she has sent the message m to Bob, one protocol
saves one modular exponentiation operation in the proving process. If Alice needs
to prove to others, then our protocol needs one pairing operation, which is typi-
cally slower than the two modular exponentiation operations needed in Wan05a.
Comparison of our protocol with Wan05b is more complex due to different public
key cryptography systems used in the two protocols. Wan05b uses RSA. ElGa-
mal encryption scheme and the Schnorr signature scheme used in Wan05a and
ours are based discrete logarithm problem, and, as a result, can take the advan-
tage of Elliptic Curve Cryptography (ECC) which uses much shorter keys than,
and therefore much faster than RSA for the same security level. For example
in [41]: RSA with 2048 bits of key length has the same security level as ECC
with 224 bits of key length, and ECC-224 is 7.8 times faster than RSA-2048 in
full length modular exponentiation. Therefore, our protocol is also much more
efficient than Wan05b. In conclusion, our protocol is more efficient than both
Wan05a and Wan05b, the two most efficient certified email protocols with off-line
TTP.
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5 Conclusion

In this paper, we presented a novel approach to construct a certified email proto-
col. This new approach is based on the authorized Diffie-Hellman key agreement.
Our proposed protocol is the most efficient certified email protocol among all the
existing certified email schemes in terms of the number of exponentiations and
communication data. Due to its efficiency, our certified email protocol is very
suitable for applications in a distributed environment.
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Abstract. The concept of timed-released encryption with pre-open
capability (TRE-PC) was introduced by Hwang, Yum and Lee. In a
TRE-PC scheme, a message is encrypted in such a way that it can only
be decrypted at a certain point in time or if the sender releases a piece
of trapdoor information known as a pre-open key. This paper examines
the security model for a TRE-PC scheme, demonstrates that a TRE-PC
scheme can be constructed using a KEM–DEM approach, and provides
an efficient example of a TRE-PC scheme.

1 Introduction

The concept of Timed-Release Encryption (TRE) is attributed to May [15]. In
a TRE scheme, a message is encrypted in such a way that it can be decrypted
by an authorised receiver only after a certain point in time. An unauthorised
receiver should not be able to determine any information about the message
from the ciphertext, and an authorised receiver should not be able to determine
any information about the message before the stated release time. It is worth
mentioning that some other timed primitives have been developed, for example,
“price via processing” by Dwork and Naor [12], timed key escrow by Bellare and
Goldwasser [1,2], and timed commitments by Boneh and Noar [5].

In the literature, there are two approaches used to construct TRE schemes.
One approach is based on Merkle’s time-lock puzzle technique [16] and involves
encrypting the message in such a way that any computer attempting to decrypt
the message will take at least a certain amount of time to solve the underlying
computational problem [1,7,17]. The other approach is to use a trusted time
server, which, at an appointed time, will assist in releasing a secret to help de-
crypt the ciphertext (e.g. [6,9,17]). Generally, time-server-based schemes require
interaction between the server and the users, and should prevent possible ma-
licious behaviour of the time server. In this paper, we shall only be concerned
with public-key TRE schemes that make use of time servers.

In standard TRE schemes, the receiver can only decrypt the ciphertext at
(or after) the release time. If the sender changes its mind after the ciphertext
is sent, and wishes the receiver to decrypt the message immediately, then the
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only thing that the sender can do is to re-send the plaintext to the receiver in
such a way that the receiver can immediately decrypt the message. However,
in some circumstances, we may need a special kind of TRE schemes, in which
a mechanism enables the receiver to decrypt the ciphertext before the release
time without requiring the sender to re-send the plaintext. Recently, Hwang,
Yum, and Lee [14] proposed such a scheme, which they term a Timed-Release
Encryption Scheme with Pre-Open Capability (TRE-PC). In a TRE-PC scheme,
a message is encrypted in such a way that it can only be decrypted at a certain
point in time, or if the sender releases a piece of trapdoor information called a
pre-open key. It should be infeasible for any user except for the intended receiver
to determine any information about the message from the ciphertext, and the
receiver should only be able to determine any information about the message
after the release time or if they are given the pre-open key. In the HYL model,
a trusted time server is required to periodically issue a timestamp, but real-
time interaction between the trusted time server and the messege senders is not
needed.

Rivest, Shamir, and Wagner gave a number of applications of Timed Released
Encryption including electronic auctions, key escrow, chess moves, release of
documents over time, payment schedules, press releases and etc. [17]. As a special
type of TRE scheme, a TRE-PC scheme is always a possible substitute of a
standard TRE scheme in all the possible applications where the latter is used.
In fact, we can argue that TRE-PC scheme is more suitable than the general
TRE scheme in most of these applications. Taking the electronic auction as
an example, normally bidders in an auction seal their bid so that it can be
opened after the bidding period is closed. However, if a bidder wishes to confirm
their bid to the auctioneer at some point before the pre-defined open time, then
they may come across some problems if a standard TRE scheme is adopted.
Document escrow provides another useful example. Many legal systems require
that classified governmental information is disclosed after a certain period of
time. This can be achieved by using a TRE-PC scheme, through which the
classified information can be encrypted by the public key of a special agent which
is responsible for disclosing classified information. Note that no original classified
information is required to be stored, and in the case that the information needs
to be prematurely released, a pre-open key can be sent to the special agent which
is able to decrypt the encrypted classified information.

Our contribution. This paper makes three important contributions. First, we
analyse the security model for TRE-PC schemes proposed by Hwang, Yum, and
Lee [14] and show that it contains several deficiencies. We propose a new security
model for a TRE-PC scheme. Second, we propose a new construction paradigm
for a TRE-PC scheme based on the KEM-DEM approach of Cramer and Shoup
[8,18]. We show that a TRE-PC scheme can be efficiently constructed from a
TRE-PC KEM and a standard DEM. Lastly, we propose an efficient new TRE-
PC KEM and prove its security in the random oracle model.
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2 The Security Model for a TRE-PC Scheme

2.1 Notation

Let N = {0, 1, 2, . . .} be the set of natural numbers and {0, 1}∗ the set of all bit
strings. If k ∈ N then {0, 1}k is the set of bit strings of length k and 1k is the
string of k ones. If A is a randomised algorithm, then y

$← A(x;O) denotes the
assignment to y of the output of A when run on input x with fresh random coins
and with access to oracle O; we write y ← A(x;O) if A is deterministic. If S is a
finite set, then x

$← S denotes the random generation of an element x ∈ S using
the uniform distribution. A function ν : N → [0, 1] is said to be negligible if for
all c ∈ N there exists a kc ∈ N such that ν(k) < k−c for all k > kc.

2.2 The HYL Security Model

In the paper that proposes the concept of timed-release encryption with pre-open
capability, Hwang, Yum, and Lee [14] propose a security model against which
the security of a TRE-PC scheme could be assessed. We refer to this model
as the HYL model. A TRE-PC scheme proposed in the HYL model consists
of six polynomial-time algorithms. A Setup algorithm is initially executed by a
trusted time server. This algorithm outputs a series of system parameters and
a master key for the time server. The time server uses this master key with the
ExtTS algorithm to create a “timestamp” for a time t. A user generates their
own encryption and decryption keys using the GenPK algorithm. Encryption can
then be performed using the Enc algorithm and a pre-open key generated using
the GenRK algorithm. These two algorithms must both take the same randomly
generated secret value v as input if the pre-open key is going to help decrypt
the ciphertext. Lastly, a ciphertext can be decrypted using the Dec algorithm,
either using the appropriate timestamp or the pre-open key.

The HYL security model claims to consider two types of adversary: an outsider
attacker (which could be “either a dishonest time server or an eavesdropper who
tries to decrypt a legal receiver’s ciphertext”) and an inside attacker (who tries
to decrypt a ciphertext before the release time without the pre-open key). Due
to size constraints, we will not reproduce the HYL security models which can be
found in the full version of the paper [11]. However, we suggest that the HYL
model is incomplete and does not model all of the possible attacks that can be
made against a TRE-PC scheme. In particular,

1. In the HYL model, the decryption process is described by one single algo-
rithm, which works in two different modes depending on the input. We feel
it is therefore more appropriate to formalise the decryption process as two
independent algorithms.

2. In the HYL model, the means by which the secret value v used by the
Enc and GenRK algorithms is generated is never specified. We consider it
more appropriate to remove the concept of a secret value, and have a single
encryption algorithm that outputs both a ciphertext and the pre-open key
for that ciphertext.
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3. In the HYL model for an inside attacker, the attacker is able to obtain a
timestamp for any time period except for the release time of the challenge
ciphertext. In reality a receiver will only ever attempt to mount this attack
before the release time of the challenge ciphertext. Hence, the HYL model
is too strict. This is a problem as it is often advantageous if the timestamp
for a given time period enables the receiver to decrypt all the messages that
were encrypted for release at earlier times.

4. The HYL model does not give an outside attacker access to the pre-open
key. However, it is realistic to assume that an outside attacker might be able
to observe the pre-open key as it is being sent to the legitimate receiver.

5. The HYL model claims that an outside attacker captures the abilities of “ei-
ther a dishonest time server or an eavesdropper who tries to decrypt a legal
receiver’s ciphertext”. However, an outside attacker is not given access to the
time server’s master key and therefore does not model a dishonest time server.

6. A TRE-PC scheme allows the sender to release pre-open key which enable
the receiver to decrypt a ciphertext before its release time. In some circum-
stances, the sender may wish to make the receiver decrypt a false message
different from which was originally sent, by sending a false pre-open key to
the receiver. This type of attack is not considered in the HYL model.

2.3 A New Security Model for TRE-PC Schemes

We propose a new formulation and security model for a TRE-PC schemes. In
our formulation, a TRE-PC scheme Π is given by six probabilistic, polynomial
time algorithms:

1. Setup: Run by the time server, this setup algorithm takes a security pa-
rameter 1� as input, and generates a secret master-key mk and the global
parameters param. We assume that all subsequent algorithms takes param
implicitly as an input.

2. Gen: Run by a user, this user key generation algorithm takes a security
parameter 1� as input, and generates a public/private key pair (pkr, skr).

3. Ext: Run by the time server, this timestamp extraction algorithm takes mk
and a time t as input, and generates a timestamp TSt for the time t.

4. Enc: Run by a sender, this encryption algorithm takes a message m, a release
time t, and the receiver’s public key as input, and returns a ciphertext C
and its pre-open key VC . It should be noted that initially the sender should
send the ciphertext C in company with the release time t to the receiver,
therefore the receiver can know the release time of C. The sender stores the
pre-open key VC and publishes it when pre-opening the ciphertext C.

5. DecRK: Run by the receiver, this decryption algorithm takes a ciphertext C,
the pre-open key VC , and the receiver’s private key as input, and returns
either the plaintext or an error message (⊥). In reality, the receiver can only
run this algorithm after the sender releases the pre-open key VC .

6. DecPK: Run by the receiver, this decryption algorithm takes a ciphertext C,
a timestamp TSt which is determined by the release time accompanied with
C, and the receiver’s private key as input, and returns either the plaintext
or an error message (⊥).
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In the proposed model, we consider the following four kinds of adversaries:

– Outside adversaries who do not know the master key of the time server and
wish to break the confidentiality of a message.

– Curious time servers who knows the master key of the time server and wish
to break the confidentiality of a message.

– Legal but curious receivers who try to decrypt the ciphertext before the
release time without the pre-open key.

– Legal but malicious senders who try to make the receiver recover a false
message different from which was originally sent.

This gives rise to four separate security models, shown in Fig. 1. All of these
models mirror the standard definition for confidentiality in public-key encryp-
tion except for the binding model, which models the capability of an attacker
to produce a ciphertext for which the two decryption algorithms return differ-
ent messages. Each attacker may have access to one or more of the following
oracles:

1. An Ext oracle that takes a time t as input and outputs the timestamp TSt =
Ext(t,mk).

2. A DecPK oracle that takes as input a ciphertext C and a time t, and outputs
DecPK(C, TSt, skr). Note that t need not be the “correct” release time for C.

3. A DecRK oracle that takes as input a ciphertext C and a pre-open key V , and
outputs DecRK(C, V, skr). Note that V need not be the “correct” pre-open
key for C.

For each of the IND games, a probabilistic, polynomial-time attacker A =
(A1,A2) is deemed to have won if it outputs a value b′ = b. A’s advantage
is defined to be |Pr[b′ = b] − 1/2|. We may now formally define the secu-
rity models for formalising the security against the above four types of adver-
saries.

Definition 1 (Outsider Security). A TRE-PC scheme Π is said to be IND-
TR-CCAOS secure if every polynomial-time attacker A that does not query the
DecPK oracle on the input (C∗, t∗) or the DecRK oracle on the input (C∗, VC∗)
has negligible advantage.

Definition 2 (Time Server Security). A TRE-PC scheme Π is said to be
IND-TR-CCATS secure if every polynomial-time attacker A that does not query
the DecPK oracle on the input (C∗, t∗) or the DecRK oracle on the input (C∗, VC∗)
has negligible advantage.

Definition 3 (Insider Security). A TRE-PC scheme Π is said to be IND-
TR-CPAIS secure if every polynomial-time attacker A that does not query the
Ext oracle on any time t ≥ t∗ has negligible advantage.

The use of the phrase ‘CPA’ in the definition of insider security may be mislead-
ing: since the attacker knows the user’s secret key skr, the attacker does not gain
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IND-TR-CCAOS

1. (param,mk)
$← Setup(1�)

2. (pkr, skr)
$← Gen(1�)

3. (m0, m1, t
∗, state)

$←
A1(param,pkr;Ext, DecRK, DecPK)

4. b
$← {0, 1}

5. (C∗, VC∗)
$← Enc(mb, t

∗, pkr)

6. b′ $←
A2(C

∗, VC∗ , state ;Ext, DecRK, DecPK)

IND-TR-CCATS

1. (param,mk)
$← Setup(1�)

2. (pkr, skr)
$← Gen(1�)

3. (m0, m1, t
∗, state)

$←
A1(param, pkr, mk;DecRK, DecPK)

4. b
$← {0, 1}

5. (C∗, VC∗)
$← Enc(mb, t

∗, pkr)

6. b′ $←
A2(C

∗, VC∗ , state ;DecRK, DecPK)

IND-TR-CPAIS

1. (param,mk)
$← Setup(1�)

2. (pkr, skr)
$← Gen(1�)

3. (m0, m1, t
∗, state)

$←
A1(param,pkr, skr;Ext)

4. b
$← {0, 1}

5. (C∗, VC∗)
$← Enc(mb, t

∗, pkr)

6. b′ $← A2(C
∗, state ;Ext)

BINDING

1. (param,mk)
$← Setup(1�)

2. (pkr, skr)
$← Gen(1�)

3. (C∗, t∗, V ∗)
$←

A(param, pkr;Ext, DecRK, DecPK)

Fig. 1. Security models for a TRE-PC scheme

IND-TR-CPA_TS

IND-TR-CCA_OS

IND-TR-CCA_TS IND-TR-CPA_IS

IND-TR-CPA_OS BINDING

Fig. 2. Relations among the security notions

any advantage from being given access to a DecRK oracle or a DecPK oracle for
any time t < t∗. Hence, there is no point to proposing a IND-TR-CCAIS security
model. For the other two IND security definitions, we may propose analogous
CPA definitions in the usual way.

Definition 4 (Binding). A TRE-PC scheme Π is said to be binding if, for
every polynomial-time attacker A that outputs a triple (C∗, t∗, V ∗), we have that
the probability that

⊥�= DecPK(C∗, TSt∗ , skr) �= DecRK(C∗, V ∗, skr) �=⊥

is negligible.
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It is worth stressing that we have adopted the notation “binding” which is a
property of commitment schemes such as that in [5]. The binding property for
TRE-PC schemes guarantees that, if the adversary has encrypted some message
then it cannot release a pre-open key to force the receiver to decrypt a false
message which is different from which was original sent. It is easy to see that
this is an analog to the binding property in commitment schemes. The difference
is that explicit proofs are usually required in commitment schemes, while no
such proofs are required in a TRE-PC scheme (as shown later in our scheme).
We further point out that if the receiver obtains ⊥ in the decryption then it
can confirm that the sender has malfunctioned. The formalisation of ciphertext
validity, as that in [9], is outside the scope of this paper.

In fact, the binding of a TRE-PC scheme is also concerned with the secure
transportation of the pre-open key when the sender decides to open the encrypted
message before the pre-defined release time. If the TRE-PC scheme is binding,
then the pre-open key does not need to be integrity protected; otherwise, the
pre-open key should be integrity protected to guarantee that the receiver will
obtain the message which the sender has intended to send.

The relationship between these notions of security is given in Fig. 2. In this
figure, “A−→B” means that if a scheme is secure in the sense of A then it is secure
in the sense of B and “A �−→ B” means that we can construct a scheme which is
secure in the sense of A but not secure in the sense of B. Given the relations in
the figure, one can easily deduce the relation between any two security notions.
Proofs of these relations can be found in the full version of the paper [11].

3 TRE-PC KEMs

The use of a symmetric encryption scheme as a subroutine of an asymmetric
encryption schemes has long been known as a useful technique for improving
the efficiency of asymmetric encryption. Cramer and Shoup [8,18] formalised
one approach to producing such hybrid asymmetric encryption schemes. This
‘KEM–DEM’ approach has subsequently been applied to various other branches
of asymmetric cryptography [3,4,10] and this section will explain how it can be
applied to TRE-PC schemes.

A KEM-DEM scheme is composed of an asymmetric KEM and a symmetric
DEM. The KEM random generates a symmetric key and an encapsulation (en-
cryption) of that key. This symmetric key is then used by the DEM to encrypt
a message. In this section, we first define a variant of KEM, namely, TRE-PC
KEM, and then show that a secure TRE-PC scheme can be constructed from a
secure TRE-PC KEM and a standard DEM.

3.1 Definitions of TRE-PC KEM

For the simplicity of description, the notation KEM refers to TRE-PC KEM in
the following definition. A KEM consists of six probabilistic, polynomial-time
algorithms:
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– KEM.Setup: This algorithm takes a security parameter 1� as input, and gen-
erates a secret master-key mk and the public parameters param. We assume
that all subsequent algorithms take param implicitly as an input

– KEM.Ext: This algorithm takes the master private key mk and a time t as
input, and generates a timestamp TSt.

– KEM.Gen: This algorithm takes a security parameter 1� as input, and outputs
a user’s public/private key pair (pkr, skr).

– KEM.Encap: This algorithm takes a release time t and a public key pkr as
input, and outputs (K,C, VC), where K is a symmetric key, C is a ciphertext,
VC is the pre-open key of C.

– KEM.DecapRK: This algorithm takes a ciphertext C, a pre-open key VC , and
the receiver’s private key skr as input, and returns either the encapsulated
key K or an error message ⊥.

– KEM.DecapPK: This decryption algorithm takes a ciphertext C, a timestamp
TSt which is determined by the release time accompanied with C, and the
receiver’s private key skr as input, and returns either the encapsulated key
K or an error message ⊥.

We assume that there exist a function KeyLen(
) such that the symmetric keys
output by a particular TRE-PC KEM (with security parameter 
) are exactly
KeyLen(
)-bits long.

3.2 Security Definitions of TRE-PC KEM

Just as for a TRE-PC scheme, we actually define four separate security notions
for a TRE-PC KEM, one for each of the different types of attacker. These security
games are shown in Fig. 3. Once again, each attacker may have access to one or
more of the following oracles:

1. An Ext oracle that takes a time t as input and outputs the timestamp TSt =
Ext(t,mk).

2. A DecapPK oracle that takes as input an encapsulation C and a time t, and
outputs either the encapsulated key K or an error message ⊥.

3. A DecapRK oracle that takes as input an encapsulation C and a pre-open key
V , and outputs either the encapsulated key K or an error message ⊥.

For each of the IND games, a probabilistic, polynomial-time attacker A =
(A1,A2) is deemed to have won if it outputs a value b′ = b. A’s advantage is
defined to be |Pr[b′ = b]− 1/2|.

The formal definitions for the security of a TRE-PC KEM mirror those of a
full TRE-PC scheme:

Definition 5 (Outsider Security). A TRE-PC KEM Π is said to be IND-
TR-CCAOS secure if every polynomial-time attacker A that does not query the
DecapPK oracle on the input (C∗, t∗) or the DecapRK oracle on the input (C∗, VC∗)
has negligible advantage.
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IND-TR-CCAOS

1. (param,mk)
$← Setup(1�)

2. (pkr, skr)
$← Gen(1�)

3. (t∗, state)
$←

A1(param,pkr;Ext, DecapRK, DecapPK)

4. b
$← {0, 1}

5. (K0, C
∗, VC∗)

$← Encap(t∗, pkr)

6. K1
$← {0, 1}KeyLen(�)

7. b′ $←
A2(Kb, C

∗, VC∗ , state ;Ext, DecRK, DecPK)

IND-TR-CCATS

1. (param,mk)
$← Setup(1�)

2. (pkr, skr)
$← Gen(1�)

3. (t∗, state)
$←

A1(param, pkr, mk;DecRK, DecPK)

4. b
$← {0, 1}

5. (K0, C
∗, VC∗)

$← Encap(t∗, pkr)

6. K1
$← {0, 1}KeyLen(�)

7. b′ $←
A2(Kb, C

∗, VC∗ , state ;DecRK, DecPK)

IND-TR-CPAIS

1. (param,mk)
$← Setup(1�)

2. (pkr, skr)
$← Gen(1�)

3. (t∗, state)
$←

A1(param,pkr, skr;Ext)
4. b

$← {0, 1}
5. (K0, C

∗, VC∗)
$← Encap(t∗, pkr)

6. K1
$← {0, 1}KeyLen(�)

7. b′ $← A2(Kb, C
∗, state ;Ext)

BINDING

1. (param,mk)
$← Setup(1�)

2. (pkr, skr)
$← Gen(1�)

3. (C∗, t∗, V ∗)
$←

A(param, pkr;Ext, DecRK, DecPK)

Fig. 3. Security models for a TRE-PC KEM

Definition 6 (Time Server Security). A TRE-PC KEM Π is said to be
IND-TR-CCATS secure if every polynomial-time attacker A that does not query
the DecapPK oracle on the input (C∗, t∗) or the DecapRK oracle on the input
(C∗, VC∗) has negligible advantage.

Definition 7 (Insider Security). A TRE-PC KEM Π is said to be IND-TR-
CPAIS secure if every polynomial-time attacker A that does not query the Ext
oracle on any time t ≥ t∗ has negligible advantage.

Definition 8 (Binding). A TRE-PC KEM Π is said to be binding if, for every
polynomial-time attacker A that outputs a triple (C∗, t∗, V ∗), we have that the
probability that

⊥�= DecapPK(C∗, TSt∗ , skr) �= DecapRK(C∗, V ∗, skr) �=⊥

is negligible.

3.3 Construction of TRE-PC Schemes

As might be expected, we show that the combination of a secure TRE-PC KEM
and a secure DEM is a secure TRE-PC scheme. We first recall the definition of
a DEM [8,18]. A DEM consists of the following two polynomial-time algorithms:
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– DEM.Enc: A deterministic, polynomial-time encryption algorithm which, on
the input a message m and a symmetric key K, outputs a ciphertext C.

– DEM.Dec: A deterministic, polynomial-time decryption algorithm which, on
the input a ciphertext C and a symmetric key K, outputs a message m or
an error message ⊥.

We assume that the range of possible keys K is the same as that of the
associated TRE-PC KEM, i.e. {0, 1}KeyLen(�). We also assume that the TRE-PC
KEM and DEM are sound in that the appropriate decapsulation/decryption
algorithms ‘undo’ the effects of the encapsulation/encryption algorithms. We
may now construct a TRE-PC scheme from a TRE-PC KEM and a DEM:

– The Setup, Ext, and Gen algorithms are given by the KEM.Setup, KEM.Ext,
and KEM.Gen algorithms, respectively.

– The encryption algorithm Enc(m, t, pkr) works in two steps. It first runs
(K,C1, VC) $←KEM.Encap(t, pkr), and then computes C2←DEM.Enc(m,K).
The ciphertext is C ← (C1, C2) and the pre-open key is VC .

– The decryption algorithm DecRK(C, VC , skr) works in two steps. It first
runs K ← KEM.DecapRK(C1, VC , skr), and then outputs the message m ←
DEM.Dec(C2,K). If K =⊥, this decryption outputs ⊥.

– The decryption algorithm DecPK(C, TSt, skr) works in two steps. It first
runs K ← KEM.DecapPK(C1, TSt, skr), and then outputs the message m←
DEM.Dec(C2,K). If K =⊥, this decryption outputs ⊥.

We also use the notion of one-time IND-CCA and IND-CPA security for a
DEM that was proposed by Cramer and Shoup [8,18]. It is not difficult to see
that we can now prove the following theorems about a TRE-PC constructed
from a TRE-PC KEM and a DEM. The proofs for the IND security of the
composition are similar to those of Cramer and Shoup [8,18] and can be found
in the full version of the paper [11]. Note that TRE-PC KEM and and the DEM
are trivially required to be sound.

Theorem 1. Let a hybrid TRE-PC scheme be formed from a TRE-PC KEM
and a DEM. If the TRE-PC KEM is IND-TR-CCAOS secure and the DEM is
IND-CCA secure, then the TRE-PC scheme is IND-TR-CCAOS secure.

Theorem 2. Let a hybrid TRE-PC scheme be formed from a TRE-PC KEM
and a DEM. If the TRE-PC KEM is IND-TR-CCATS secure and the DEM is
IND-CCA secure, then the TRE-PC scheme is IND-TR-CCATS secure.

Theorem 3. Let a hybrid TRE-PC scheme be formed from a TRE-PC KEM
and a DEM. If the TRE-PC KEM is IND-TR-CPAIS secure and the DEM is
IND-CPA secure, then the TRE-PC scheme is IND-TR-CPAIS secure.

Theorem 4. Let a hybrid TRE-PC scheme be formed from a TRE-PC KEM
and a DEM. If the TRE-PC KEM is binding, then the TRE-PC scheme is
binding.
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4 An Efficient TRE-PC KEM

In this section, we propose a concrete instantiation of a TRE-PC KEM. The
scheme we propose shares similarities with the scheme proposed by Hwang, Yum
and Lee [14]; however, our scheme is substantially simpler and, when used with
a suitable DEM, gives rise to a more efficient TRE-PC scheme.

4.1 The Description

Our scheme makes use of a bilinear map on a group. In other words, we assume
the existence of an instance generating algorithm that, given a security parameter
1�, outputs a group description (G1,GT , P, q, ê), where G1 and GT are additively
written groups of prime order q, P is a generator of G1, and ê : G1 ×G1 → GT

is a polynomial-time computable, non-degenerate, bilinear map. This is nor-
mally instantiated by a super-singular elliptic curve of small embedding degree;
for more details the reader is referred to the paper of Galbraith, Paterson and
Smart [13].

The algorithms of the TRE-PC KEM are defined as follows:

– KEM.Setup: This algorithm takes the security parameter 1� as input, gen-
erates a group structure (G1,GT , P, q, ê) of the required security level and
chooses three hash functions:

H1 : {0, 1}∗→G1 H2 : G1×G1×GT →{0, 1}� H3 : G1×GT →{0, 1}KeyLen(�).

The algorithm then chooses a random element s $← Zq and sets S ← sP . The
public parameters are param ← (G1,GT , P, q, ê,H1,H2,H3, S); the master
private key is mk← s.

– KEM.Ext: This algorithm takes the master secret mk and a time t as input,
and returns TSt ← sH1(t).

– KEM.Gen: This algorithm randomly generates x
$← Zq, and outputs the

public/private keys skr ← x and pkr ← xP .
– KEM.Encap: This algorithm takes a release time t and the receiver’s public

key pkr as input, and returns (K,C, VC), which are computed as follows:
1. Randomly generate r $← Zq and v

$← Zq.
2. Compute Qt ← H1(t), X1 ← r · pkr, X2 ← ê(S,Qt)v.
3. Compute C1 ← rP , C2 ← vP , C3 ← H2(C2, X1, X2).
4. Compute K ← H3(X1, X2), VC ← vQt and C ← (C1, C2, C3).

– KEM.DecRK: This algorithm takes a ciphertext C = (C1, C2, C3), the pre-
open key VC = vQt, and the private key skr = x as input, and runs as
follows:
1. Compute X1 ← xC1 and X2 ← ê(S, VC).
2. Check whether C3 = H2(C2, X1, X2). If not, output ⊥ and halt.
3. Otherwise, return K ← H3(X1, X2).

– KEM.DecPK: This algorithm takes a ciphertext C = (C1, C2, C3), the times-
tamp TSt, and the private key skr = x as input, and runs as follows:
1. Compute X1 ← xC1 and X2 = ê(C2, TSt).
2. Check whether C3 = H2(C2, X1, X2). If not, output ⊥ and halt.
3. Otherwise, return K ← H3(X1, X2).
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4.2 Security Results

The security of our scheme is based on two principles: that it is infeasible for
any attacker who does not know the private key skr = x to compute the value
X1 = xC∗

1 and that it is infeasible for any attacker who does not know either the
master private key, the pre-open key or the appropriate timestamp to compute
the value X2 = ê(P, P )rvs for the given value of C∗

2 . We prove the security of
our scheme in the random oracle model under the following assumptions:

Definition 9 (Computational Diffie-Hellman). Given a group description
(G1,GT , P, q, ê) generated at a security level 1� and a pair of group elements
(αP, βP ), where α, β

$← Zq, the computational Diffie-Hellman (CDH) problem
is to determine αβP . The CDH assumption is that no probabilistic, polynomial-
time algorithm can solve this problem with non-negligible probability.

Definition 10 (Bilinear Diffie-Hellman). Given a group description
(G1,GT , P, q, ê) generated at a security level 1� and a triple of group elements
(αP, βP, γP ), where α, β, γ

$← Zq, the Bilinear Diffie-Hellman (BDH) prob-
lem is to determine ê(P, P )αβγ . The BDH assumption is that no probabilistic,
polynomial-time algorithm can solve this problem with non-negligible probability.

These computational assumptions allow us to prove the follow theorems about
the IND security of our scheme.

Theorem 5. The TRE-PC KEM is IND-TR-CCATS secure in the random or-
acle model under the CDH assumption.

Proof. We construct an algorithm B which solves the CDH problem with non-
negligible probability whenever A breaks the IND-TR-CCATS security of the
TRE-PC KEM with non-negligible advantage. Let A = (A1,A2) be an IND-
TR-CCATS attacker with non-negligible advantage. B runs as follows:

1. Receive an instance of the group on which the CDH problem is to be solved
(G1,GT , P, q, ê) and a CDH challenge (αP, βP ).

2. Game setup: Randomly select s $← Zq and set S = sP . The public parame-
ters are param ← (G1,GT , P, q, ê,H1,H2,H3, S) and the master private key
is mk ← s. Set the user’s public key to be pkr ← αP .

3. Phase 1: B executes A1 on the input (param, pkr,mk). A1 has access to
several oracles during its execution (we assume, without loss of generality,
that A never queries the random oracles with the same value twice):
– If A queries the random oracle Hi with a new input Z, then B random

generates a value Y from the appropriate range, stores (Z, Y ) in Hi-list
and returns Y .

– If A queries the KEM.DecapRK oracle on the input C = (C1, C2, C3) and
VC , then B runs as follows:
(a) Check whether there exists an input Z = (z1, z2, z3) on the H2-list

such that z1 = C2, ê(C1, pkr) = ê(z2, P ) and z3 = ê(S, VC). If not,
B returns ⊥ to A.
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(b) Check whether C3 = H2(z1, z2, z3). If not, B returns ⊥ to A.
(c) If both checks succeed, then B returns K ← H3(z2, z3) to A.

– If A queries the KEM.DecapPK oracle on the input C = (C1, C2, C3) and
t, then B runs as follows:
(a) Compute TSt = sH1(t).
(b) Check whether there exists an input Z = (z1, z2, z3) on the H2-list

such that z1 = C2, ê(C1, pkr) = ê(z2, P ) and z3 = ê(C2, TSt). If not,
B returns ⊥ to A.

(c) Check whether C3 = H2(z1, z2, z3). If not, B returns ⊥ to A.
(d) If both checks succeed, then B returns K ← H3(z2, z3) to A.

A1 terminates by outputting a challenge release time t∗ and some state
information state.

4. Challenge: B sets C∗
1 ← βP (the CDH challenge element). B also randomly

selects v
$← Zq, C∗

3
$← {0, 1}�, K $← {0, 1}KeyLen(�) and sets C∗

2 ← vP ,
VC∗ ← vH1(t∗). . The challenge ciphertext is set as C∗ ← (C∗

1 , C
∗
2 , C

∗
3 ).

5. Phase 2: B executesA2 on the input (K,C∗, VC∗ , state). During its execution,
A2 may query several oracles, these oracle queries are answered in the same
way as in Phase 1. A2 terminates by outputting a bit b′.

6. B random selects an input Z on either the H2-list or the H3-list in such a
way that all inputs are equally likely to be chosen. If Z = (z1, z2, z3) is an
input on the H2-list, then B outputs z2. If Z = (z1, z2) is an input on the
H3-list, then B outputs z1.

We analyse this algorithm and show two things. First, that the environment
that A can only distinguish the simulated environment from a real attack en-
vironment with negligible probability (up until the point in which A makes a
critical query to a hash function). Second, if A succeeds in breaking the security
of the TRE-PC KEM, then it must make a critical query with non-negligible
probability and that such a critical query allows B to recover the solution to the
CDH problem with non-negligible probability.

Suppose A makes at most qi queries to the random oracles Hi, qRK queries
to the KEM.DecapRK oracle and qPK queries to the KEM.DecapPK oracle. We
define a critical query to be either:

– a query (z1, z2, z3) to the H2 oracle such that z1 = C∗
2 , z2 = αβP and

z3 = ê(S, VC∗), or
– a query to the (z1, z2) to the H3 oracle such that z1 = αβP and z2 =
ê(C∗

2 , TSt∗).

Note that the simulation of the random oracles is perfect up until the point
where a critical query is made. Again, up until the point where a critical query is
made, the simulation of the KEM.DecapRK algorithm is perfect unless A submits
a query (C1, C2, C3) and VC to the decapsulation oracle such that A has not
queried the H2 oracle on the input z1 = C2, z2 = rαP and z2 = ê(S, VC), where
C1 = rP , and yet H2(z1, z2, z3) = C3. It is clear that, since H2 is a random
oracle, these conditions will hold with probability 1/2�, which is negligible. This
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argument can also be used to show that the simulation of KEM.DecapPK is
sufficient correct up until the point where a critical query is made.

Let n2 and n3 be the maximum number of possible entries on the H2- and
H3-lists respectively. Note that

n2 = q2 and n3 = q3 + qRK + qPK

due to the way in which the decapsulation oracles are simulated. If a critical
query is made, then B will output the solution to the CDH problem with proba-
bility at least 1/n2+n3. Let E be the event that a critical query is made and let
E′ be the event that the critical H3 query is made, and note that Pr[E] ≥ Pr[E′].
Since H3 is a random oracle, a standard argument shows that Pr[E′] is greater
than or equal to A’s advantage. Therefore, since A has non-negligible advantage,
we must have that B has a non-negligible probability of output the solution to
the CDH problem. ��

Theorem 6. The TRE-PC KEM scheme is IND-TR-CPAIS secure in the ran-
dom oracle model under the BDH assumption.

Proof. The proof of this theorem is similar to the proof of IND-TR-CCATS se-
curity, although slightly more complex. Again, we construct an algorithm B that
solves the BDH problem with non-negligible probability whenever A breaks the
IND-TR-CPAIS security of the TRE-PC KEM with non-negligible advantage.
Let A = (A1,A2) be an IND-TR-CPAIS attacker with non-negligible advantage.

Suppose that A makes at most qi queries to the random oracles Hi, and qE

queries to the KEM.Ext oracle. B will keep track of the queries made to the Hi

oracle via a number of lists. In any execution of B, we shall see that the Hi-list
has at most ni elements on it, where

n1 = q1 + qE + 1 , n2 = q2 and n3 = q3 .

B runs as follows:

1. Receive an instance of the group on which the BDH problem is to be solved
(G1,GT , P, q, ê) and a BDH challenge (αP, βP, γP ).

2. B randomly choose an integer j $← {1, 2, . . . , n1}. This will define B’s guess
for the challenge release time.

3. Game setup: Set S ← αP and define the public parameters to be param←
(G1,GT , P, q, ê,H1,H2,H3, S). Randomly select x $← Zq, set skr ← x and
pkr ← xP .

4. Phase 1: B executes A1 on the input (param, pkr , skr). A1 has access to
several oracles during its execution (we assume, without loss of generality,
that A never queries the random oracles with the same value twice):
– If A (or the KEM.Ext oracle) queries the random oracle H1 with a new

input t and this is not the j-th new query to the H1 oracle, then B random
generates a value y $← Zq, sets Y ← yP , stores (t, y, Y ) in H1-list and
returns Y .
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– If A (or the KEM.Ext oracle) queries the random oracle H1 with a new
input t and this is the j-th new query to the H1 oracle, then B adds
(t,⊥, γP ) to the H1-list and returns γP to A.

– If A queries the random oracle H2 or H3 with a new input Z, then B
random generates a value Y from the appropriate range, stores (Z, Y )
in the appropriate Hi-list and returns Y .

– If A queries the KEM.Ext oracle on the time t, then compute H1(t),
extract the appropriate element y from the H1-list entry (t, y, Y ), and
returns yS to A. If there exists no element y, i.e. if t was the j-th query
to the H1 oracle, then B terminates its entire execution by outputting a
random group element from GT .

A1 terminates by outputting a challenge release time t∗ and some state
information state.

5. If the H1 oracle has not been queried on t∗, then B “queries” H1 on t∗.
6. If t∗ is not the j-th query to the H1 oracle, then B terminates its entire

execution by outputting a random group element from GT .
7. Challenge: B randomly chooses r∗ $← Zq and sets C∗

1 ← r∗P . B sets C∗
2 ← βP

and randomly selects C∗
3

$← {0, 1}� and K
$← {0, 1}KeyLen(�). The challenge

ciphertext is defined to be C∗ = (C∗
1 , C

∗
2 , C

∗
3 ).

8. Phase 2: B executes A2 on the input (K,C∗, state). During its execution,
A2 may query several oracles, these oracle queries are answered in the same
way as in Phase 1. A2 terminates by outputting a bit b′.

9. B random selects an input Z on either the H2-list or the H3-list in such a
way that all inputs are equally likely to be chosen. If Z = (z1, z2, z3) is an
input on the H2-list, then B outputs z3. If Z = (z1, z2) is an input on the
H3-list, then B outputs z2.

Again we show that the environment provided by B to A almost exactly
simulates the attack environment in which A expects to run up until either the
simulation terminates because t∗ is not the j-th query to H1 or a critical oracle
query is made. We define a critical oracle query to be either:

– a query (z1, z2, z3) to the H2 oracle such that z1 = C∗
2 , z2 = r∗xP and

z3 = ê(C∗
2 , TSt∗) = ê(P, P )αβγ , or

– a query to the (z1, z2) to the H3 oracle such that z1 = r∗xP and z2 =
ê(C∗

2 , TSt∗) = ê(P, P )αβγ .

We note that the simulation of the random oracles and the extraction oracle
is perfect up until the point in which a critical oracle query is made. Fur-
thermore, we note that the probability that we make an incorrect choice of j
is 1/n1.

Let E be the event that a critical oracle query is made and let E′ be the event
that the critical H3 oracle query is made. Note that Pr[E] ≥ Pr[E′]. Now, by a
standard argument, since H3 is a random oracle, A’s advantage in breaking the
IND-TR-CPAIS security of the TRE-PC KEM is less than or equal to Pr[E′].
Furthermore, if E occurs, then B has at least a 1/n2+n3 chance of outputting the
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correct solution to the CDH problem. This means that if A has a non-negligible
advantage ε of breaking the IND-TR-CPAIS security of the TRE-PC KEM, then
B has a non-negligible probability of at least ε/n1(n2 + n3) of solving the CDH
problem. ��
The binding of the scheme can be proven directly in the random oracle model,
or in the standard model under the following assumption.

Definition 11 (Collision Resistance). A hash function H generated at se-
curity level 1� is collision resistance if the probability that any polynomial-time
algorithm can find a pair of inputs x �= y such that H(x) = H(y) is negligible as
a function of the security parameter.

Theorem 7. If H2 is collision-resistant, then the TRE-PC KEM is binding.

Proof. Without loss of generality, suppose that at the end of the legitimate bind-
ing attack game the attacker outputs (C∗, t∗, VC∗), where C∗ = (C∗

1 , C
∗
2 , C

∗
3 ).

Recalling the definitions of KEM.DecapRK and KEM.DecapPK from the previous
section, the attacker wins the game only if O1 �= O2, where

O1 = H3(X1, X
′
2), O2 = H3(X1, X

′′
2 ), X1 = skrC

∗
1 , X

′
2 = ê(S, VC∗),

X ′′
2 = ê(C∗

2 , TSt∗), C∗
3 = H2(C∗

2 , X1, X
′
2), and C∗

3 = H2(C∗
2 , X1, X

′′
2 ).

If the attacker wins, then it is staightforward to verify that X ′
2 �= X ′′

2 ; other-
wise O1 = O2. Hence, if the attacker wins the game then this implies that the
attacker can find a collision for H2, where the two inputs are (C∗

2 , X1, X
′
2) and

(C∗
2 , X1, X

′′
2 ). Under the assumption that H2 is collision-resistant, it follows that

the attacker can only win the game with a negligible probability. ��

5 Conclusion

In this paper we have analysed the security model for TRE-PC schemes proposed
by Hwang, Yum, and Lee, and shown its defects. We proposed a new security
model which avoids the defects possessed by the HYL model. We also worked
out the complete relations among the security notions defined in the proposed
security model, introduced a new notion, i.e. TRE-PC KEM, and presented a
hybrid model to construct TRE-PC schemes.
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Abstract. In 2006, Huang, Susilo, Mu and Zhang proposed the concept
of restricted universal designated verifier signatures while Klonowski, Ku-
biak, Kutylowski and Lauks proposed independently the dual primitive
of dedicated signatures. In both notions, a signature holder can convince
one or more verifiers of his knowledge of a digital signature, but cannot
exploit this knowledge without being punished for that. In this paper,
we state that a signature holder may generically provide a proof that it
has a certain signature without being punished and that consequently
both primitives cannot fulfill their alleged security goals. To demonstrate
the feasibility of this claim, we propose the first non-interactive univer-
sal designated verifier proof of the possession of an Elgamal or a DSA
signature in the random oracle model. This construction may be of in-
dependent interest.
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1 Introduction

In order to control the dissemination of digital signatures, many schemes have
been proposed to protect the privacy of the signer or the holder of a signa-
ture. We can cite for instance undeniable signatures [4], confirmer signatures [3]
and designated verifier signatures [10]. In particular, some constructions aim at
modifying a traditional signature into a signature with special properties (for in-
stance a signature with controlled verification, like universal designated verifier
signatures [19]).
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In 2006, Huang, Susilo, Mu and Zhang proposed the concept of restricted
universal designated verifier signatures while Klonowski, Kubiak, Kutylowski
and Lauks proposed independently, the dual primitive of dedicated signatures.
In both notions, a signature holder can convince one or more verifiers of his
knowledge of a digital signature, but cannot exploit this knowledge without
being punished for that. The main purpose of the present paper is to state that
that both primitives do not achieve their purported security goals.

Background. In the electronic world, digital signatures are used to verify
whether one message really comes from the alleged signer. Like handwritten
signatures, standard digital signatures are non-repudiable and universally ver-
ifiable. However, universal verifiability might not suit the circumstances under
which verifying signature is a valuable action.

In 1989, Chaum and van Antwerpen [4] introduced the concept of undeniable
signature scheme in which anyone has to interact with the signer to verify the
validity/invalidity of a signature. The important property of non-repudiation still
holds because the signer cannot disavow a signature through a denial protocol
unless the signature is indeed invalid.

Jakobsson, Sako and Impagliazzo [10] proposed designated verifier signatures
in 1996. A designated verifier signature scheme provides authentication of a
message without providing the non-repudiation property of traditional signatures
and can be used to convince only one third party (i. e. the designated verifier
and only him can be convinced about its validity or invalidity). This is due to
the fact that the designated verifier can always create a signature intended for
himself that is indistinguishable from an original signature.

Steinfeld, Bull, Wang and Pieprzyk [19] proposed the extended concept of
universal designated-verifier signatures in 2003. These signatures are ordinary
digital signatures with the additional functionality that any holder of a sig-
nature is able to convert it into a designated verifier signature specified to a
designated verifier of his choice. Steinfeld et al. also showed how to construct
efficient deterministic universal designated-verifier signature schemes from bilin-
ear group-pairs and many constructions have been proposed compatible with
popular digital signature schemes (e. g. [12,13,20,21]).

In 2006, Huang, Susilo, Mu and Zhang [8] proposed the concept of restricted
universal designated verifier signature. In this construct, a signature holder can
convince up to t verifiers that he actually knows a signature, and the convincing
statement is designated to these verifiers. However, when the signature holder
uses the signature t+1 times, then the signature becomes publicly available. This
primitive can potentially be used in a service such as an Internet trial-browsing
service in which a user is allowed to access the service up to t times without any
charge, but will be charged on the t+ 1 count of access.

In [11], Klonowski, Kubiak, Kutylowski and Lauks introduced a new kind
of signatures, in a sense dual of the previous ones, that they called dedicated
signatures. In their scheme, the signer can construct a signature in such a way
that the recipient cannot show this signature to third parties without being
punished for that. Namely, in this protocol, the signer gives the recipient a
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dedicated signature; the verifier derives a standard signature from it and if the
verifier presents this signature to third parties, the signature together with the
dedicated signature reveal the private key of the verifier. In the present paper,
we prove that these two primitives are not sound since generically they cannot
fulfill their alleged security goals.

Contributions of the paper. In this paper, we prove that a signature holder
may generically provide a proof that it has a certain signature without being
punished and that consequently both primitives are not sound. The result comes
from the well-know fact that if non uniform one-way function exist then there
exists a computational zero-knowledge proof system of membership for all lan-
guages having an interactive proof system of membership [6].

As a practical example to defeat the first realization of the concept of re-
stricted universal designated verifier signatures, we remind an efficient proof of
possession of a Boneh-Lynn-Shacham signature [1] (BLS signature for short) due
to Hufschmitt, Lefranc and Sibert [9].

Finally, to demonstrate the feasibility of this attack on the primary dedicated
signature scheme proposed by Klonowski et al., we also propose the first effi-
cient non-interactive designated verifier proof of the possession of an Elgamal
signature [5] in the so called random oracle model. This result is of independant
interest, as it does not exist, as far as we know, any concrete proof of knowledge
of an Elgamal or a DSA signature, but a specialization of the inefficient proofs
given in [15] by Nguyen, Bao, Mu and Varadharajan.

2 Definitions

In this section, we give the definition of (restricted) universal designated verifier
signature scheme and dedicated signature scheme.

2.1 Notations

The set of n-bit strings is denoted by {0, 1}n and the set of all finite binary strings
(or messages) is denoted by {0, 1}∗. Concatenation of two strings x and y is
denoted by x‖y. Let A be a probabilistic Turing machine running in polynomial
time (a PPTM, for short), and let x be an input for A. The probability space
that assigns to a string σ the probability that A, on input x, outputs σ is denoted
by A(x). The support of A(x) is denoted by A[x]. Given a probability space S,
a PPTM that samples a random element according to S is denoted by x

R←− S.
For a finite set X , x R←− X denotes a PPTM that samples a random element
uniformly at random from X .

2.2 Universal Designated Verifier Signatures

In this subsection, we recall the definition of universal designated verifier signa-
ture (UDVS) schemes [19], together with the security model, that we will need
to present the new Elgamal scheme in Section 3.
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Definition 1. A universal designated verifier signature scheme Σ is an 8-tuple

Σ = (Setup, SKeyGen,VKeyGen, Sign,Verify,Designate,Fake,DVerify)

such that

– (Setup, SKeyGen, Sign,Verify) is a signature scheme:
• Σ.Setup is a probabilistic polynomial-time Turing machine (PPTM)

which takes an integer k as input. The output are the public parame-
ters Υ . k is called the security parameter.

• Σ.SKeyGen is a PPTM which takes the public parameters as input. The
output is a pair (sks, pks) where sks is called a signing secret key and pks
a signing public key.

• Σ.Sign is a PPTM which takes the public parameters, a message, and a
signing secret key as inputs and outputs a bit string.

• Σ.Verify is a PPTM which takes the public parameters, a message m,
a bit string σ and a signing public key pks. It outputs a bit. If the bit
output is 1 then the bit string σ is said to be a signature on m for pks.

– Σ.VKeyGen is a PPTM which takes the public parameters as input. The
output is a pair (skv, pkv) where skv is called a verifying secret key and pkv
a verifying public key.

– Σ.Designate is a polynomial-time Turing machine (PTM) which takes the
public parameters, a message m, a signing public key pks, a signature σ on
m for pks and a verifying public key as inputs and outputs a bit string.

– Σ.Fake is a PPTM which takes the public parameters, a message, a signing
public key and a verifying secret key as inputs and outputs a bit string.

– Σ.DVerify is a deterministic PPTM which takes the public parameters, a
message m, a bit string τ , a signing public key pks, a verifying public key
pkv the matching verifying secret key skv as inputs. It outputs a bit. If the bit
output is 1 then the bit string τ is said to be a designated verifier signature
on m from pks to pkv.

Σ must satisfy the following properties, for all k ∈ N, all Υ ∈ Σ.Setup[k], all
(pks, sks) ∈ Σ.SKeyGen[Υ ], all (pkv, skv) ∈ Σ.VKeyGen[Υ ] and all messages m:

– Correctness of Signature:

∀σ ∈ Σ.Sign[Υ,m, sks], Σ.Verify[Υ,m, σ, pks] = {1}.

– Correctness of Designation:

∀σ ∈ Σ.Sign[Υ,m, sks], ∀τ ∈ Σ.Designate[Υ,m, pks, σ, pkv],
Σ.DVerify[Υ,m, τ, pks, pkv, skv] = {1}.

– Source Hiding:

Σ.Designate(Υ,m, pks, Σ.Sign(Υ,m, sks), pkv]) = Σ.Fake(Υ,m, pks, skv).

The correctness properties insure that a properly formed (designated verifier)
signature is always accepted by the (designated) verifying algorithm. The source
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hiding property states that given a message m, a signing public key pks, a veri-
fying public key pkv and a designated verifier signature τ on m from pks to pkv
it is infeasible to determine if τ was produced by Σ.Designate or Σ.Fake.

The unforgeability notion is an extention of the classical notion of exitential
unforgeability under a chosen-message attack as defined in [7].

Definition 2. A universal designated verifier signature scheme is said strongly
existentially unforgeable if no adversary (PPTM) F has a non-negligible advan-
tage in the following game:
1. The challenger C takes as input a security parameter k and executes

Υ ← UDVS.Σ.Setup(k),
(sk�

S , pk
�
S)← UDVS.Σ.KeyGen(k, Υ ),

(sk�
V , pk

�
V )← UDVS.VKeyGen(k, Υ ).

It gives pk�
S and pk�

V to the forger F and keeps sk�
S and sk�

V to itself.
2. The forger F can issue the following queries:

i) a signing query for some message m; the challenger C executes

σ ← UDVS.Σ.Sign(k, Υ,m, sk�
S)

and hands σ to F ;
ii) a verification query for pairs (m, σ̃) of his choice; C returns to F the

value UDVS.DVerify(k, Υ,m, σ̃, pk, (sk�
V , pk

�
V ));

3. F outputs a V -designated verifier signature σ̃� for a message m�.

The adversary F succeeds if UDVS.DVerify
(
k, Υ, pk�

S , (sk
�
V , pk

�
V )
)

= 1 and if σ̃�

has not been obtain from the signing oracle. An attacker F is said to (τ, qs, qv, ε)-
break the unforgeability of the UDVS scheme if he succeeds in the game within
running time τ and with probability ε after having made qs signing queries and
qv verification queries.

We will propose in Section 3 a new UDVS scheme compatible with standard
Elgamal or DSA signatures, reaching these security notions. Another important
security requirement concerning the undeniable signature familly is the notion
of anonymity (roughly speaking, an anonymous designated verifier signature is
indistinguishable from a random string.). Is has been precisely defined in [13]
in terms of privacy of signer’s identity for designated verifier signatures, but we
will not need this property for our purpose.

2.3 Restricted Universal Designated Verifier Signatures

According to [8],

〈a〉 restricted UDVS scheme is comprised of three procedures namely sign-up,
designation and open. In the sign-up procedure, a user obtains a signature σ
from the signer. This signature is publicly verifiable, but this is kept by the
user (and hence, the signature holder) to be used in the designation proce-
dure. 〈. . .〉 In the designation procedure, the signature holder can designate
the signature to up to t verifiers. The verifiers will be convinced with the
authenticity of the signature, but they cannot convince any other third party
about this fact. When the signature holder uses the signature to convince the
t+1 verifier, the open procedure can be invoked to reveal the signature 〈. . .〉.
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One of our purpose in this paper is to disprove the relevancy of this primitive.
Therefore, it is necessary to describe formally this primitive.

Definition 3. Let t be a positive integer. A t-restricted universal designated
verifier signature scheme Σ is a 9-tuple

Σ = (Setup, SKeyGen,VKeyGen, Sign,Verify,Designate,Fake,DVerify,Open)

such that

– (Setup, SKeyGen,VKeyGen, Sign,Verify,Designate,Fake,DVerify) is a univer-
sal designated signature scheme;

– Σ.Open is a PPTM which takes the public parameters, a message, t+ 1 bit
strings, a signing public key and t+1 verifying public keys and outputs a bit
string.

Σ must satisfy the following property for all messages m:

– Opening:

∀k∈N, ∀Υ ∈Σ.Setup[k], ∀(pks, sks)∈Σ.SKeyGen[Υ ], ∀σ∈Σ.Sign[Υ,m, sks],
∀(pkv, skv) = [(pkv1, skv1), . . . , (pkvt+1, skvt+1)] ∈ Σ.VKeyGen[Υ ]t+1

∀τ1 ∈ Σ.Designate[Υ,m, pks, σ, pkv1],
. . .

∀τt+1 ∈ Σ.Designate[Υ,m, pks, σ, pkvt+1]
#{τ1, . . . , τt+1} = t+ 1 ⇒ Σ.Open[Υ,m, τ1, . . . , τt+1,pkv, pks] = {σ}.

This property formalizes the (erroneous, as we will see) fact that when the
signature is designated to convince t + 1 verifiers, the open procedure can be
invoked to reveal the original signature.

In [8], Huang et al. presented a restricted UDVS scheme based on BLS
signatures.

2.4 Dedicated Signatures

The definition of dedicated signatures is not given explicitly and formally, but
can be readily easily deduced from this informal description from [11]. We give
here a formal definition (although the concept is pointless as we will see).

Definition 4. A dedicated signature scheme Σ is an 7-tuple

Σ = (Setup, SKeyGen,VKeyGen,DDSCreate,Retrieve,Verify,Punish)

such that

– Σ.Setup is a PPTM which takes an integer k as input. The output are the
public parameters Υ . k is called the security parameter.
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– Σ.SKeyGen is a PPTM which takes the public parameters as input. The
output is a pair (sks, pks) where sks is called a signing secret key and pks a
signing public key.

– Σ.VKeyGen is a PPTM which takes the public parameters as input. The
output is a pair (skv, pkv) where skv is called a verifying secret key and pkv
a verifying public key.

– Σ.DDSCreate is a PPTM which takes the public parameters, a message, a
signing secret key and a verifying public key as inputs and outputs a bit
string.

– Σ.Retrieve is a PPTM which takes as input the public parameters, a message,
a bit string, a signing public key and a verifying secret key as input. The
output is a bitstring.

– Σ.Verify is a PTM which takes the public parameters, a message m, a bit
string σ and a signing public key pks. It outputs a bit. If the bit output is 1
then the bit string σ is said to be a signature on m for pks.

– Σ.Punish is a PPTM which takes the public parameters, a message, two bit
strings, a signing public key and a verifying public key and outputs a bit
string.

Σ must satisfy the following properties, for all k ∈ N, all Υ ∈ Σ.Setup[k], all
(pks, sks) ∈ Σ.SKeyGen[Υ ], all (pkv, skv) ∈ Σ.VKeyGen[Υ ] and all messages m:

– Correctness of Retrieval:

∀τ ∈ Σ.DDSCreate(Υ,m, sks, pkv), ∀σ ∈ Σ.Retrieve(Υ,m, τ, pks, skv),
Σ.Verify[Υ,m, σ, pks] = {1}.

– Punishement:

∀τ ∈ Σ.DDSCreate(Υ,m, sks, pkv), ∀σ ∈ Σ.Retrieve(Υ,m, τ, pks, skv),
Σ.Punish[Υ,m, τ, σ, pks, pkv] = {skv}.

The first property can be restated as follows: (Setup, SKeyGen, Sign,Verify) is a
signature scheme, where Sign is the PPTM which takes the public parameters,
a message m, a signing key pair (sks, pks) and a verifying key pair (skv, pkv)
as inputs, obtains τ by executing Σ.DDSCreate(Υ,m, sks, pkv) and returns σ
obtained by executing Σ.Retrieve(Υ,m, τ, pks, skv). The second property means
that the verifier loses his own secrets when exhibiting the signature.

In [11], Klonowski et al. proposed a realization of this primitive based on
Elgamal signatures. It is well known, that the original Elgamal signature scheme
is existentially forgeable (see [17] for instance). As in [11], we consider only,
in this paper, the variant of Elgamal scheme where a collision-resistant hash
function is applied to the message to be signed and only the digest is actually
“signed”. This “hashed Elgamal signatures” has not been proven existentially
unforgeable but there exist arguments in favor of their security in the so-called
generic group model [2].

It is worth noting that this scheme presented is very similar to the anonymous
designated verifier signature scheme proposed in 2003 by Saeednia, Kremer and
Markowitch [18].
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3 Universal Designated Verifier Elgamal and DSA
Signatures

3.1 Description of the Scheme

We present in this section the first efficient universal designated verifier Elgamal
and DSA signatures. We describe our new scheme with the Elgamal signature
for simplicity. It works as follows:

– UDVS.Σ.Setup: public parameters include the output of a DL-parameter-
generator as well as an integer n, a collision-resistant hash function h :
{0, 1}∗ → Z

∗
p: Υ := {n, p,Z∗

p, g, h}.
– UDVS.Σ.SKeyGen: a signer’s private key is a randomly chosen a R← Z

∗
p; his

public key consists of a group element yA = ga mod p.
– UDVS.Σ.Sign: given a message m ∈ {0, 1}∗, the signer picks k R← Z∗

p and
sets u = gk mod p and v = k−1(h(m) − au) mod p − 1. The signature is
σ = (u, v).

– UDVS.Σ.Verify: a plain signature σ = (u, v) on m is accepted if yu
Au

v = gh(m)

mod p.
– UDVS.VKeyGen : a designated verifier’s private key is a random element
b R← Z∗

p; the matching public key is yB = gb mod p.
– UDVS.Designate: the holder of a signature σ = (u, v), who chooses B as des-

ignated verifier produces the designated verifier signature τ = (u,P) where
P is the non-interactive zero-knowledge proof of knowledge of one discrete
logarithm among two HVZKPK

(
logu(gh(m)y−u

A ) ∨ logg(yB)
)
, derived from

the interactive the proof described in Fig. 1.
More precisely, the holder of the signature σ computes e = h(c1||c2||m||u),

with y1 = u, y2 = g, α1 = gh(m)y−u
A mod p and α2 = yB. Then τ is the

5-tuple (u, e1, e2, s1, s2).
– UDVS.Fake: the designated verifier produces the designated verifier

signature τ = (u,P) where u is a random element u R← Zp and P is the
non-interactive variant of the proof HVZKPK

(
logu(gh(m)y−u

A ) ∨ logg(yB)
)

(performed thanks to the knowledge of logg(yB)).
– UDVS.DVerify: given a purported signature τ = (u,P), the designated ver-

ifier checks the correctness of the non-interactive proof P = (e1, e2, s1, s2)
by computing c1 = (gh(m)y−u

A )e1us1 and c2 = ye2
B gs2 and checking that

h(c1||c2||m||u) = e1 + e2 mod q.

DSA signatures. The difference between Elgamal signatures and DSA signatures
lies essentially in the fact that computation are done modulo a prime q dividing
p− 1 instead of working modulo p − 1. Therefore, the technique previously de-
scribed can be trivially adapted in the case of the DSA signatures. The resulting
scheme is also the first universal designated verifier signature scheme based on
DSA.

Remark 1. A UDVS scheme reaches the source-hiding property if and only if
the designated verifier can produce one bitstring that is indistinguishable from
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Prover Verifier

r1, e2, s2 ∈R Z
∗
p

c1 = yr1
1 mod p

c2 = αe2
2 ys2

2 mod p
c1, c2−−−−−−−−−−−→

e ∈R Z
∗
p

e←−−−−−−−−−−−
e1 = e2 − e mod p − 1
s1 = r1 − e1x1 mod p − 1

(e1, s1), (e2, s2)−−−−−−−−−−−→
c1

?
= αe1

1 ys1
1 mod p

c2
?
= αe2

2 ys2
1 mod p

e
?
= e1 + e2 mod p − 1

The prover knows x1 = logy1
(α1).

Fig. 1. HVZKPK
(
logy1

(α1) ∨ logy2
(α2)

)
one that was generated by the signature holder. In the Elgamal-based scheme,
that we have described this property is fulfilled. However, it remains an open
problem to design an efficient UDVS scheme compatible with Elgamal/DSA
signatures with the stronger property that the designated verifier can always
produce identically distributed transcripts that are indistinguishable from the
one generated by the signature holder:

∀k ∈ N, ∀Υ ∈ Σ.Setup[k], ∀(pks, sks) ∈ Σ.SKeyGen[Υ ],
∀(pkv, skv) ∈ Σ.VKeyGen[Υ ], ∀m ∈ {0, 1}(

τ
R←−Σ.Sign(Υ,m, sks);Σ.Designate(Υ,m, pks, τ, pkv])

)
=Σ.Fake(Υ,m, pks, skv).

3.2 Security Analysis

Theorem 1 (Unforgeability). Let F be a forger that (t, qs, qv, ε)-breaks the
Elgamal UDVS scheme in the qh-random oracle model, with ε > 7qH/2k. There
exists a (t′, �(14qH + 2)qs/ε�, ε′)-EF-CMA algorithm A against hashed Elgamal

signature such that ε′ ≥ 1/9 after running F by
⌈

2
ε

+
14qh

ε

⌉
times.

Proof. The proof relies on the well-known forking technique proposed in 1996
by Pointcheval and Stern [17]: assuming that an attacker can forge a designated
verifier signature, another algorithm could obtain, by replaying sufficiently many
times this attacker with randomly chosen hash functions (i.e. random oracles),
two forged designated verifier signatures of the same message and with the same
randomness. Then, these two forged signatures could be used to solve some com-
putational problem which is assumed to be intractable: producing an Elgamal
forgery or computing a discrete logarithm.
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The algorithm A takes as inputs the public parameters Υ , an Elgamal signing
public-key pks = y and has access to a signing oracle SA that it can query up to
�(14qH +2)qS/ε� times. It produces a verifying public key pkv in such a way that
if it obtains in the simulation the discrete logarithm of pkv in base g, then it will
also know the discrete logarithm of pks in base g and therefore can readily forge a
signature (i. e. pkv = yr for a known r ∈ [[1, p− 1]] picked uniformly at random).
The adversary A executes the forger F many times (at most �(14qh + 2)ε−1�)
on the entries (Υ, pks, pkv) with different random tapes and/or random oracles.
The algorithm A will run in two stages.

First stage: The forgerF , with random tape �, can make qS queries to the signing
oracle SF and qH queries to the random oracle H. We denote by (e1, . . . , eqH )
the list of the qH answers of the random oracle. Therefore, we can see a random
choice of the random oracle as a random choice of such a vector e. In his first
stage, A executes the forger F at most (2/ε) times with different random tapes
and random oracles, until it outputs a valid forgery. For each execution, the
queries made by F to the signing oracle SF are simply transfered to SA and
the returned signatures are stored by A.

Eventually, in one executionF outputs a forgedmessage/signature pair (m�, τ�)
where τ� = (u�, e�

1, e
�
2, s

�
1, s

�
2)under the public keys (pks, pkv).Theprobability that

F outputs a valid forgery at the end of one execution is ε. SinceH is a random oracle,
the probability thatF succeeds and has not submitted (c�1||c�2||m�||u�) (where c�1 =
(gh(m)y−u�

A )e�
1us�

1 and c�2 = y
e�
2

B gs�
2 ) toH is less than2−k.Therefore, theprobability

that F returns a forged message/signature which has been queried to the random
oracle in one execution is at least 6ε/7. We define Ind(�, e) to be the index of this
query. We then define the sets

Si = {(�, e)|FSF ,e(�) succeeds & Ind(�, e) = i}

for i ∈ [[1, qH ]] and S =
⋃qH

i=1 Si. We have Pr[S] ≥ 6ε/7.
Therefore, A at the end of the first stage will get at least one pair

(�, e = (e1, . . . , eqH ))

(and a corresponding list of signatures) leading to a forgery with probability at
least 1− exp(−12/7) ≥ 4/5 after having queried SA at most �2qS/ε� times. Let
us denote γ = Ind(�, e) the index of query of the forged message to the random
oracle. Let I be the set consisting of the most likely indices i:

I = {i ∈ [[1, qH ]],Pr[Si|S] ≥ 1/2qH}.

It is easy to see [17, Lemma 3], that in case of success, the index γ lies in I with
probability at least 1/2. Moreover, with probability greater than 1/5 the pair
(�, e) belongs to Sγ .

Second stage: In the second stage, A executes F with the random tape � which
led to the forgery in the first step and different random oracles e′ = (e′1, . . . , e′qH

)
such that ei = e′i for i < γ, e′γ is picked uniformly at random in [[1, p− 1]] \ {eγ}
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and the e′j ’s are picked uniformly at random in [[1, p− 1]] for j > γ. A uses the
signatures recorded in the first step to answer F signature queries before the
γ-th random oracle query and its own signing oracle SA after that point.

After running F �14qH/ε� times, A will obtain, if (�, e) ∈ Sγ , with proba-
bility at least 3/5 (see [17, Lemma 1] for instance), two valid designated verifier
signatures on m�: (u�, e�

1, e
�
2, s

�
1, s

�
2) and (u�, e†1, e

†
2, s

†
1, s

†
2) such that

e�
1 + e�

2 �= e†1 + e†2 mod p

and

(gh(m)y−u�

A )e�
1us�

1 = (gh(m)y−u�

A )e†
1us†

1 mod p and y
e�
2

B gs�
2 = y

e†
2

B gs†
2 mod p.

If e�
1 �= e†1 mod p, then A can readily obtain a valid Elgamal signature on m�

as (u�, v�) where
v� = (s�

1 − s†1)/(e
�
1 − e†1) mod p.

Similarly, e�
2 �= e†2 mod p, then A can retrieve the discrete logarithm of pkv

in base g, and therefore the discrete logarithm of pks in base g and can easily
produce a Elgamal signature on the message of his choice. ��

The complexity assumption used in the previous theorem is the best we can
hope for. Indeed, if there exists a polynomial time EF-CMA adversary against
hashed Elgamal signature then there exists a forger that breaks the Elgamal
UDVS scheme with the same advantage in the same running time.

The results from [16] show that it is very unlikely that the existential unforge-
ability of hashed Elgamal signatures can be reduced to the discrete logarithm
problem in the standard security model. However, it is worth noting that the
hashed Elgamal signature scheme is a special case of the protocol AbstractDSA
which has been proposed and analyzed1 by Brown in 2005 [2]. Let us recall the
Theorem 3 from [2] which asserts the existential unforgeability of the scheme in
the generic group model:

Theorem 2 ([2]). If there exists an (εF , τF , qF )-forger F of AbstractDSA in
the generic group model with uniform hash function h and an almost-invertible
conversion function f in the generic group model for An, then there exists an
(εC , τC)-collision-finder Ch and (εZ , τZ)-zero-finder where

εC + εZ ≥ εF +
τ2F
2n

and τC , τZ ≤ 2τF .

For the specific instance of AbstractDSA investigated in this paper, the conver-
sion function is the identity map which is trivially almost invertible [2, § 2.2.2]
and therefore it can be argued that this theorem applies to hashed Elgamal
signatures.
1 We refer to [2] for the definitions of uniform hash function, almost-invertible conver-

sion function and zero-finder adversary.
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4 On the Weakness of Restricted Universal Designated
Verifier and Dedicated Signatures

As mentioned above, the dedicated verifier may provide a zero-knowledge proof
that it has a certain signature without presenting it. In many legal systems
it would suffice in the court to present such a proof in order to derive legal
consequences of the signed document.

The weakness and eventually the meaningless of these two concepts of signa-
tures comes from the following theorem. It is among the most important results
in zero-knowledge protocols and state the possible construction, using commit-
ment schemes, of a zero-knowledge proof system for all languages in NP. This
theorem was proved in [6] by Goldreich, Micali and Widgerson.

Theorem 3. If non-uniform one-way functions exist, then there exists a com-
putational zero-knowledge proof system of membership for all languages having
an interactive proof system of membership.

The impact of the theorem on the two kinds of signature is described below.

4.1 The Case of Restricted UDVS: Proving the Possession of a BLS
Signature

In Huang et al. paper, the authors propose a pairing-based scheme. A user receive
a BLS signature, and should convince only a given number of third parties of
the validity of this signature. We argue that these restriction is not possible
since the signature holder can always prove the validity of the BLS signature he
holds by applying the zero-knowledge proof of the possession of a BLS signature
described in Fig. 2.

Prover Verifier

r ∈R [[1, q − 1]]
w = e(P, P )r

w−−−−−−−−−−−→
c ∈R [[0, q − 1]]

c←−−−−−−−−−−−
Y = rP + cσ

Y−−−−−−−−−−−→
e(P, Y )

?
= w × e(aP, H(m))c

Prover: (pk, sk) = (aP, a) and σ = aH(m)

Fig. 2. Proof of knowledge of a BLS signature [9]
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4.2 The Case of Dedicated Signatures: Proving the Possession of an
Elgamal Signature

In Klonowski et al. paper [11], the authors propose a scheme based on Elgamal
signatures. In this scheme, the signer is suppose to construct his signature in such
a way that the recipient cannot show the signature to third parties without being
punished (for instance, his secret key is revealed). The sent signature is called a
dedicated signature, but the recipient can derive a true Elgamal signature from
it. Therefore once the holder has computed this Elgamal signature, he can use
our new protocol defined in Section 3 to convince any third party without being
punished. Indeed, the signature holder can transform the Elgamal signature into
a signature designated to the third party.

5 Conclusion

Signatures of knowledge allow a prover to prove the knowledge of a secret with
respect to some public information noninteractively. In our case, this helps to
defeat some concepts which aim at controlling the holder of a signature. To this
purpose, we propose for the two concepts of restricted universald designated ver-
ifier signatures and dedicated signatures two proofs which permit the signature
holder to prove his knowledge of a signature without being troubled. The first
one is a classical proof of a BLS signature. The second one is the first efficient
designated verifier proof of an Elgamal signature.

An interesting open problem would be to have an efficient zero-knowledge
proof of the possession of an Elgamal (or DSA) signature. What we proposed is
an efficient designated verifier proof, which might not be relevant in some special
cases. Moreover, the concept of punishing a signature holder who unauthorizedly
disclose a signature is still open. The presence of an authority seems necessary
to design such a scheme.
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Lambrinoudakis, C. (eds.) TrustBus 2006. LNCS, vol. 4083, pp. 192–202. Springer,
Heidelberg (2006)

12. Laguillaumie, F., Libert, B., Quisquater, J.-J.: Universal Designated Verifier Sig-
natures Without Random Oracles or Non-Black Box Assumptions. In: De Prisco,
R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 63–77. Springer, Heidelberg
(2006)

13. Laguillaumie, F., Vergnaud, D.: Designated Verifier Signatures: Anonymity and
Efficient Construction from any Bilinear Map. In: Blundo, C., Cimato, S. (eds.)
SCN 2004. LNCS, vol. 3352, pp. 107–121. Springer, Heidelberg (2005)

14. Lipmaa, H., Wang, G., Bao, F.: Designated Verifier Signature Schemes: Attacks,
New Security Notions and A New Construction. In: Caires, L., Italiano, G.F.,
Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
61–71. Springer, Heidelberg (2005)

15. Nguyen, K.Q., Bao, F., Mu, Y., Varadharajan, V.: Zero-Knowledge Proofs of Pos-
session of Digital Signatures and its Applications. In: Varadharajan, V., Mu, Y.
(eds.) Information and Communication Security. LNCS, vol. 1726, pp. 103–118.
Springer, Heidelberg (1999)

16. Paillier, P., Vergnaud, D.: Discrete-Log Based Signatures May Not Be Equivalent
to Discrete-Log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20.
Springer, Heidelberg (2005)

17. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. J. Cryptology 13(3), 361–396 (2000)

18. Saeednia, S., Kremer, S., Markowitch, O.: An Efficient Strong Designated Verifier
Signature Scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971,
pp. 40–54. Springer, Heidelberg (2004)

19. Steinfeld, R., Bull, L., Wang, H., Pieprzyk, J.: Universal Designated-Verifier Sig-
natures. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 523–542.
Springer, Heidelberg (2003)

20. Steinfeld, R., Wang, H., Pieprzyk, J.: Efficient Extension of Standard Schnorr/RSA
signatures into Universal Designated-Verifier Signatures. In: Bao, F., Deng, R.,
Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 86–100. Springer, Heidelberg (2004)

21. Vergnaud, D.: New Extensions of Pairing-based Short Signatures into Universal
Designated Verifier Signatures. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 58–69. Springer, Heidelberg (2006)



Identity-Based Proxy Re-encryption Without

Random Oracles�

Cheng-Kang Chu and Wen-Guey Tzeng

Department of Computer Science, National Chiao Tung University,
Hsinchu, Taiwan 300

{ckchu,wgtzeng}@cs.nctu.edu.tw

Abstract. A proxy re-encryption scheme allows Alice to temporarily
delegate the decryption rights to Bob via a proxy. Alice gives the proxy
a re-encryption key so that the proxy can convert a ciphertext for Alice
into the ciphertext for Bob. In this paper, we propose two identity-based
proxy re-encryption schemes, which are both proved secure in the stan-
dard model. The first one is efficient in both computation and ciphertext
length, and the other one achieves chosen-ciphertext security. Our solu-
tions answer the open problems left in the previous work.

Keywords: Proxy re-encryption, identity-based encryption, standard
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1 Introduction

A proxy re-encryption (PRE) scheme involves three parties: Alice, Bob, and a
proxy. Alice gives the proxy a re-encryption key so that the proxy can convert
the ciphertext encrypted under Alice’s public-key into the ciphertext for Bob.
Certainly, the proxy cannot learn the plaintext or the secret keys of Alice or Bob.
By using PRE, Alice can temporarily forward the ciphertext to Bob without
revealing her secret key. A natural application of PRE is the re-encryption of
e-mails: when Alice takes a leave of absence, she can let Bob read her encrypted
e-mails. Once Alice comes back, the proxy stops transferring the e-mails.

Green and Ateniese [10] proposed the first identity-based PRE (IB-PRE).
It allows the proxy to convert an encryption under Alice’s identity into the
encryption under Bob’s identity. So Alice can assign the re-encryption key to a
proxy with Bob’s identity only. Their schemes are based on Boneh and Franklin’s
identity-based encryption (IBE) scheme [5], which was shown to be secure in the
random oracle model. However, many researchers have expressed doubts about
the random oracle heuristic. For example, some uninstantiable random oracle
cryptosystems, which are secure in the random oracle model but are insecure in
any real world implementation, were proposed [7,2]. Therefore, it is natural to
ask whether secure IB-PRE scheme exists in the standard model, i.e., without
random oracles.
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In this paper, we propose two IB-PRE schemes, which are both proved secure
in the standard model. The first one is efficient in both computation and cipher-
text length, and the other one achieves chosen-ciphertext security. Both of our
schemes satisfy the following properties of PRE, which are mentioned in [1,10].

– Unidirectionality. Alice can delegate decryption rights to Bob without per-
mitting she to decrypt Bob’s ciphertext.

– Non-Interactivity. Alice can compute re-encryption keys without the partic-
ipation of Bob or the private key generator (PKG).

– Multi-Use. The proxy can re-encrypt a ciphertext multiple times, e.g. re-
encrypt from Alice to Bob, and then re-encrypt the result from Bob to
Carol.

The schemes proposed by Green and Ateniese [10] also satisfy these properties
except that their CCA-secure construction is not multi-use. Therefore, we give
the answers to the two open problems left in [10] by providing

1. IB-PRE schemes secure in the standard model; and
2. a multi-use CCA-secure IB-PRE scheme.

Related Works. Mambo and Okamoto [14] first introduced the notion of PRE.
They gave some transformations that allow the original recipient to forward
specific ciphertexts to another recipient. Blaze et al. [3] later provided another
definition for PRE that allows the keyholder to publish the proxy function and
have it applied by untrusted parties without further involvement by the origi-
nal keyholder. After that, several public-key based PRE were continuously pro-
posed [13,12,1,11,9]. Finally, Green and Ateniese [10] provided identity-based
PRE. Note that Ivan and Dodis [12] also proposed an identity-based PRE scheme
in which the PKG delegates decryption rights for all identities in the system.
Therefore, individual users cannot delegate their decryption rights. The concept
of their construction is much different from the approach of Green and Ateniese.

Organizations. In the rest of this paper we first give some preliminaries, in-
cluding the IBE schemes without random oracles (Section 2) and the definition
of IB-PRE (Section 3). Then we present a CPA-secure IB-PRE scheme in Sec-
tion 4 and a CCA-secure IB-PRE scheme in Section 5. The summary of this
paper is provided in Section 6.

2 Backgrounds

We briefly describe the groups and IBE schemes that will be used in our con-
structions.

2.1 Pairings

Let G and G1 be two (multiplicatively) cyclic groups of prime order p. Let
e : G×G → G1 is a map with the following properties:
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– Bilinear: for all g1, g2 ∈ G and a, b ∈ Z, e(ga
1 , g

b
2) = e(g1, g2)ab.

– Non-degenerate: for some g ∈ G, e(g, g) �= 1.

We say that G is a bilinear group if the group operations in G and G1, and the
bilinear map are efficiently computable.

2.2 Waters IBE Scheme

Waters [15] introduces an efficient IBE scheme without random oracles (Wa-
IBE). The scheme is described as follows.

– Setup(1λ): On input security parameter 1λ, randomly choose two groups
G and G1 with prime order p, a bilinear map e and a generator g defined
above. Let α ∈ Zp be a randomly chosen secret. Set the value g1 = gα and
choose the value g2 ∈ G randomly. Let v be an n-bit string and V be the
set of all i for which the i-th bit of v is one. Define F (v) = u′

∏
i∈V ui,

where u′, u1, u2, . . . , un are chosen at random from G. The public parameter
μ = (g, g1, g2, F (·)) and the master secret key mk = gα

2 are outputted.
– KeyGen(μ,mk, v): Let v be an n-bit string representing an identity. The

private key for v is computed as

dv = (gα
2 F (v)r, gr),

where r ∈R Zp.
– Encrypt(μ, v,M): For the message M and identity v, compute the cipher-

text as
C = (M · e(g1, g2)t, gt, F (v)t),

where t ∈R Zp.
– Decrypt(μ, d, C):

Let d = (d1, d2) and C = (c1, c2, c3). Compute the message as

M = c1
e(d2, c3)
e(d1, c2)

.

By the security argument in [15], we have the following theorem.

Theorem 1. Wa-IBE is semantically secure assuming the decisional BDH as-
sumption holds.

2.3 Waters CCA-Secure IBE Scheme

The Wa-IBE scheme can be naturally extended to a hierarchical IBE scheme
(Wa-HIBE). Moreover, by the results of Canetti et al. [8], further improved
upon by Boneh and Katz [6], one can build a CCA-secure IBE scheme from a
2-level HIBE scheme. As stated in [15], one can use Wa-IBE at the first level and
the scheme of Boneh and Boyen [4] with only selective-ID security at the second
level to get a more efficient CCA-secure IBE scheme. However, for brevity, we
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directly use the 2-level Wa-HIBE to construct a CCA-secure IBE scheme (Wa-
CCA-IBE).

The following scheme is a CCA-secure IBE scheme from Wa-HIBE [15] and
the results of Boneh and Katz [6].

– Setup(1λ): On input security parameter 1λ, the parameters are chosen like
the Wa-IBE scheme except that the function F is replaced by two functions

F1(v) = u′1
∏
i∈V

u1,i and F2(w) = u′2u2,0

∏
i∈W

u2,i,

where u′1, u1,1, . . . , u1,n, u
′
2, u2,0, u2,1, . . . , u2,n are chosen at random from G,

v, w are two n-bit strings and V ,W are the set of all i for which the i-th bit
of v and w is one, respectively. Moreover, let (G, Sign,Vrfy) be a one-time
signature scheme in which the verification key output by G(1λ′

) has length
n. The public parameter

μ = (g, g1, g2, F1(·), F2(·), (G, Sign,Vrfy))

and the master secret key mk = gα
2 are outputted.

– KeyGen(μ,mk, v): Let v be an n-bit string representing an identity. Then
the private key for v is computed as

dv = (gα
2 F1(v)

r , gr),

where r ∈R Zp.
– Encrypt(μ, v,M): Perform G(1λ′

) to get (vk, sk). For the message M and
identity v, compute the ciphertext as

C̃ = (M · e(g1, g2)t, gt, F1(v)t, F2(vk)t),

where t ∈R Zp. Moreover, compute σ = Signsk(C̃). Output the ciphertext
C = (C̃, vk, σ).

– Decrypt(μ, d, C): Let d = (d1, d2) and C = (c1, c2, c3, c4, vk, σ). Check if

Vrfyvk((c1, c2, c3, c4), σ) ?= 1.

If not, output ⊥. Otherwise, compute d′1 = d1F2(vk)r′
and d′2 = gr′

, where
r′ ∈R Zp. Then decrypt C as

M = c1
e(d2, c3)e(d′2, c4)

e(d′1, c2)
.

By the security argument in [6], we have the following theorem.

Theorem 2. If Wa-HIBE is secure against chosen-plaintext attacks and
(G, Sig,Vrfy) is a one-time signature scheme, then Wa-CCA-IBE is secure against
chosen-ciphertext attacks.
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3 Definitions

We give the definition of a secure IB-PRE scheme in this section.

3.1 Identity-Based Proxy Encryption

In addition to the four algorithms of an IBE scheme, an IB-PRE scheme needs
two other algorithms: RKGen and Reencrypt to generate re-encryption key
and re-encrypt ciphertexts, respectively.

Definition 1 ([10]). An identity-based proxy re-encryption scheme consists of
algorithms:

– Setup(1λ): On input a security parameter, the public parameter μ and mas-
ter secret key mk are outputted.

– KeyGen(μ,mk, v): On input the master secret key mk and an identity v,
output the decryption key dv.

– Encrypt(μ, v,m): On input an identity v and a message m, output the ci-
phertext Cv.

– RKGen(μ, dv1 , v1, v2): On input a decryption key dv1 and identities v1, v2,
output the re-encryption key dv1→v2 .

– Reencrypt(μ, dv1→v2 , Cv1): On input a re-encryption key dv1→v2 and a ci-
phertext Cv1 , output the re-encrypted ciphertext Cv2 .

– Decrypt(μ, dv, Cv): On input a private key dv and a ciphertext Cv, output
the plaintext m or ⊥.

Correctness. Suppose (μ,mk)← Setup(1λ) and dv ← KeyGen(μ,mk, v). Let
Cv be a ciphertext output from

1. Encrypt(μ, v,m); or
2. Reencrypt(μ, dv′→v, Cv′),

where dv′→v ← RKGen(μ, dv′ , v′, v), dv′ ← KeyGen(μ,mk, v′), and Cv′ ←
Encrypt(μ, v′,m),

for any identity v. Then the following equation holds:

m = Decrypt(μ, dv, Cv).

3.2 Security

Now we define the security game of an IB-PRE scheme. Note that we assume
the proxy will not collude with the re-encryption recipient. This is reasonable
because given the re-encryption key, the collusion of these two parties can re-
encrypt ciphertexts and decrypt them naturally.

Definition 2. The security of an IB-PRE scheme is defined according to the
following game ExpA,IND-PrID-ATK, where ATK ∈ {CPA,CCA}.
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1. Setup. Perform Setup(1λ) to get (μ,mk) and give μ to A.
2. Query phase 1. A makes the following queries.

(a) Extract(v): return dv = KeyGen(μ,mk, v) to A.
(b) RKExtract(v1, v2): return dv1→v2 =RKGen(μ, dv1 , v1, v2) toA, where

dv1 = KeyGen(μ,mk, v1).
If ATK=CCA, A can make the additional queries:
(c) Reencrypt(v1 , v2, Cv1): return Cv2 =Reencrypt(μ, dv1→v2 , v1, v2, Cv1)

to A, where dv1→v2 =RKGen(μ, dv1 , v1, v2), dv1 = KeyGen(μ,mk, v1).
(d) Decrypt(v, Cv): return M = Decrypt(μ, dv, Cv) to A, where dv =

KeyGen(μ,mk, v).
3. Challenge. A presents (v∗,m0,m1). If the queries

– Extract(v∗); and
– RKExtract(v∗, v′) and Extract(v′) for any identity v′,

are never made, return C∗ = Encrypt(μ, v∗,mb) to A, where b ∈R {0, 1}.
4. Query phase 2. A continues making queries as in the Query phase 1, except

for the following queries
– Extract(v∗);
– RKExtract(v∗, v′) and Extract(v′) for any identity v′;
– RKExtract(v∗, v′) and Decrypt(v′, Cv′) for any identity v′ and any

ciphertext Cv′ .
– Reencrypt(v∗ , v′, C∗) and Extract(v′) for any identity v′;
– Decrypt(v∗, Cv∗); and
– Decrypt(v′, Cv′) forany identityv′,whereCv′ ←Reencrypt(v∗, v′, C∗).

5. Guess. A outputs the guess b′ ∈ {0, 1}.

If b′ = b, A wins the game. Let OATK be the set of oracles that A can query
under ATK=CPA or CCA, and ÕATK be the set of the same oracles with the
restrictions in Query phase 2. Then the advantage of A = (A1,A2) in the above
game is defined as:

AdvIND-PrID-ATK
A = Pr[b′ = b : b ∈R {0, 1}, (μ,mk)← Setup(1λ),

(v∗,m0,m1, st)← AOATK

1 (μ), C∗ ← Encrypt(μ, v∗,mb),

b′ ← AÕATK

2 (st, C∗)]− 1
2
.

We say that an IB-PRE scheme is IND-PrID-ATK secure, ATK∈{CPA,CCA},
if for all probabilistic polynomial time algorithm A and negligible function ε,

AdvIND-PrID-ATK
A ≤ ε(k).

4 The First Construction

We present the first scheme IB-PRE-I in this section. The scheme is based on
Wa-IBE, and provides CPA security. It is efficient in both computation and
ciphertext length.
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4.1 The Scheme IB-PRE-I

For brevity, we first assume the proxy re-encrypts ciphertexts once. The multi-
use property will be discussed later.

– Setup(1λ): On input security parameter 1λ, randomly choose two groups
G and G1 with prime order p, a bilinear map e and a generator g defined
above. Let l ≤ |p| − 1 and E1 : {0, 1}l → G1, E2 : {0, 1}l → G be two
encodings. Let α ∈ Zp be a randomly chosen secret. Set the value g1 = gα

and choose the value g2 ∈ G randomly. Let v be an n-bit string and V be
the set of all i for which the i-th bit of v is one. Define F (v) = u′

∏
i∈V ui,

where u′, u1, u2, . . . , un are chosen at random from G. The public parameter
μ = (g, g1, g2, F (·), E1(·), E2(·)) and the master secret key mk = gα

2 are
outputted.

– KeyGen(μ,mk, v): Let v be an n-bit string representing an identity. The
private key for v is computed as

dv = (gα
2 F (v)r, gr),

where r ∈R Zp.
– Encrypt(μ, v,m): For the message m ∈ {0, 1}l and identity v, compute the

ciphertext as
Cv = (M · e(g1, g2)t, gt, F (v)t),

where t ∈R Zp and M = E1(m).
– RKGen(μ, dv1 , v1, v2): Let dv1 = (d1, d2). Compute the re-encryption key

for v2 as
dv1→v2 = (d1K−1, d2, R),

where k ∈R {0, 1}l,K = E2(k) ∈ G and R← Encrypt(μ, v2, k).
– Reencrypt(μ, dv1→v2 , Cv1): Let dv1→v2 = (d̂1, d2, R) and Cv1 = (c1, c2, c3).

Re-encrypt the ciphertext:

Cv2 = (c1
e(d2, c3)

e(d̂1, c2)
, c2, R)

– Decrypt(μ, dv , Cv):
If Cv is a regular encryption, let dv = (d1, d2) and Cv = (c1, c2, c3). Decrypt
Cv as usual:

M = c1
e(d2, c3)
e(d1, c2)

.

If Cv is a re-encrypted ciphertext, let Cv = (c1, c2, R). Decrypt Cv by per-
forming

k ← Decrypt(μ, dv, R), K = E2(k), and M = c1/e(c2,K).

Output m = E−1
1 (M).
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We can see that the recipient only needs k to decrypt the re-encrypted ciphertext.
Therefore the proxy can further convert the re-encrypted ciphertext to others by
iteratively re-encrypting R. As long as the recipient can decrypt the ciphertext
to get k, the message m can be computed as well. The scheme satisfies the multi-
use property. Note that R is not a single group element, but we can just encrypt
all elements in the tuple. The cost of ciphertext grows linearly with the number
of re-encryptions. As stated in [10], it seems to be inevitable for a non-interactive
scheme.

4.2 Security

Next we prove that the scheme IB-PRE-I is IND-PrID-CPA secure if the Wa-IBE
scheme is IND-ID-CPA secure. For the adversaryA breaking IB-PRE-I, we build
a simulator B to break Wa-IBE. The simulator maintains a table with tuples
(β, v1, v2), where β ∈ {0, 1} and v1, v2 are two identities. Since we have to query
key extraction oracle of Wa-IBE for v to answerA’s queries to RKExtract(v, ·).
If A queries RKExtract(v, ·) and later sends v as the challenge identity, then
B cannot get the challenge ciphertext of Wa-IBE for v and the simulation must
fail. Therefore when A queries RKExtract(v, ·), B either sends v to the key
extraction oracle of Wa-IBE or randomly generates a re-encryption key. We set
β = 1 if B returns the correct key and β = 0 otherwise.

Theorem 3. Suppose there is an adversary A that has advantage ε against the
game ExpA,IND-PrID-CPA. Then there is an algorithm B that breaks Wa-IBE with
advantage at least

AdvIND-ID-CPA
B ≥ ε/e(1 + qE),

where qE is the maximal number of A’s queries to Extract, and e is the base
of the natural logarithm. The running time of B is O(time(A)).

Proof. Assume that there is an adversary A breaking IB-PRE-I. We construct
an algorithm B to break Wa-IBE. Given the public parameter μ of Wa-IBE
scheme, B performs the following steps. Note that B maintains a table with
tuples (β, v1, v2) ∈ {0, 1}×{0, 1}n×{0, 1}n. Let ∗ denote the wildcard. Without
loss of generality, we assume an input is queried to an oracle only once.

1. Setup. Give the parameter μ to A.
2. Query phase 1. A can make the following queries.

(a) Extract(v): B first generates a random coin β so that Pr[β = 1] =
δ for some δ that will be determined later. If β = 0, or (0, v, ∗) or
(0, ∗, v) already exists on the table, B outputs a random bit and aborts.
Otherwise, B sends the query to the key extraction oracle of Wa-IBE to
get dv, and returns dv to A. B also records (1, v, v) on the table.

(b) RKExtract(v1, v2): B chooses a random coin β as in the Extract. If
β = 1, or (1, v1, v1) or (1, v2, v2) already exists on the table, B queries
the key extraction oracle of Wa-IBE for v1, and then computes the re-
encryption key as the original scheme and returns it to A. Otherwise, B
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returns a random re-encryption key dv1→v2 = (x, y,Encrypt(μ, v2, z))
for x, y ∈R G and z ∈R {0, 1}l. Finally, B records the tuple (β, v1, v2) on
the table.

3. Challenge. A sends (v∗,m0,m1) to B, if (1, v∗, v′) exists on the table for
any v′, B randomly outputs a bit and aborts. Otherwise, B sends the same
challenge (v∗,m0,m1) to the challenger of Wa-IBE. When the challenger
returns ciphertext C∗, B returns C∗ to A.

4. Query phase 2. A continues making the following queries, except for the
restrictions described in Definition 2.

(a) Extract(v): B answers queries as in the Query phase 1.
(b) RKExtract(v1, v2): For all v1 �= v∗, B queries the key extraction oracle

of Wa-IBE for v, computes the re-encryption key as the original scheme
and returns it to A. For v1 = v∗, B returns a random re-encryption key
dv1→v2 = (x, y,Encrypt(μ, v2, z)) for x, y ∈R G and z ∈R {0, 1}l, and
records the tuple (0, v1, v2) on the table.

5. Guess. When A outputs the guess b′, B outputs b′.

We can see that if B does not abort during the game, the view of A is identical
to the real attack except for some incorrect re-encryption keys (when β = 0). We
will address this case later (in Lemma 1) by showing that A cannot distinguish
these random generated keys from the real keys. So now we only need to calculate
the probability that B aborts during the game. Suppose A makes a total of qE

private key extraction queries. The probability that B does not abort in phases
1 or 2 is δqE . The probability that it does not abort during the challenge step
is 1 − δ. Therefore, the probability that B does not abort during the game is
δqE (1 − δ). This value is maximized at δopt = 1 − 1/(qE + 1). Using δopt, the
probability that B does not abort is at least 1/e(1 + qE). So B’s advantage is at
least ε/e(1 + qE). �

It remains to show that no adversary A can distinguish the simulation from a
real interaction in which all values have the correct form. We complete this part
by the following lemma.

Lemma 1 (Indistinguishability of simulations). If Wa-IBE is IND-ID-
CPA secure, then the simulation in the proof of Theorem 3 is computationally
indistinguishable from the real scheme.

Proof. The simulation in the proof of Theorem 3 almost acts the same as the
real scheme, except for the incorrect form of re-encryption keys for β = 0.
Therefore we only consider the indistinguishability of randomly chosen values
(x, y,Encrypt(μ, v2, z)) and the real re-encryption key. Since (x, y) must be a
valid form of (d1K−1, d2) for some valid private key (d1, d2) of v and K ∈ G, the
problem is equivalent to the distinguishability of the encryption of z ∈R {0, 1}l

and the encryption of k. Therefore the simulation works if Wa-IBE is IND-ID-
CPA secure. �
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5 The Chosen-Ciphertext Secure Construction

The CCA-secure IB-PRE scheme is presented in this section. It is based on
Wa-CCA-IBE.

5.1 The Scheme IB-PRE-II

Like IB-PRE-I, we first assume the proxy re-encrypts ciphertexts once.

– Setup(1λ): On input security parameter 1λ, the parameters are chosen like
the first construction except that the function F is replaced by two functions

F1(v) = u′1
∏
i∈V

u1,i and F2(w) = u′2u2,0

∏
i∈W

u2,i,

where u′1, u1,1, . . . , u1,n, u
′
2, u2,0, u2,1, . . . , u2,n are chosen at random from G,

v, w are two n-bit strings and V ,W are the set of all i for which the i-th bit
of v and w is one, respectively. Let l ≤ |p| − 2 and E1 : {0, 1}l+1 → G1, E2 :
{0, 1}l → G be two encodings. Moreover, let (G, Sign,Vrfy) be a one-time
signature scheme in which the verification key output by G(1λ′

) has length
n. The public parameter

μ = (g, g1, g2, F1(·), F2(·), (G, Sign,Vrfy))

and the master secret key mk = gα
2 are outputted.

– KeyGen(μ,mk, v): Let v be an n-bit string representing an identity. Then
the private key for v is computed as

dv = (gα
2 F1(v)

r , gr),

where r ∈R Zp.
– Encrypt(μ, v,m): Perform G(1λ′

) to get (vk, sk). For the message m ∈
{0, 1}l and identity v, compute

C̃ = (M · e(g1, g2)t, gt, F1(v)t, F2(vk)t),

where t ∈R Zp and M = E1(m||0). Moreover, compute σ = Signsk(C̃).
Output the ciphertext Cv = (C̃, vk, σ).

– RKGen(μ, dv1 , v1, v2): Let dv1 = (d1, d2). Compute the re-encryption key
for v2 as

dv1→v2 = (d1K−1, d2, R),

where k ∈R {0, 1}l,K = E2(k) ∈ G and R ← Encrypt’(μ, v2, k). We define
Encrypt’ the same as Encrypt except that it appends ‘1’ to the message.

– Reencrypt(μ, dv1→v2 , Cv1): Let dv1→v2 = (d̂1, d2, R) and Cv1 =
(c1, c2, c3, c4, vk, σ). Check if Vrfyvk((c1, c2, c3, c4), σ) ?= 1. If not, output ⊥.
Otherwise, compute d′1 = d̂1F2(vk)r′

, d′2 = gr′
and

Cv2 = (Cv1 , R, d
′
1, d2, d

′
2)

where r′ ∈R Zp.
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– Decrypt(μ, dv , Cv):
If Cv is a regular encryption, let dv = (d1, d2) and Cv = (c1, c2, c3, c4, vk, σ).
Check if Vrfyvk((c1, c2, c3, c4), σ) ?= 1. If not, output ⊥. Otherwise, compute
d′1 = d1F2(vk)r′

, d′2 = gr′
where r′ ∈R Zp and decrypt Cv:

M = c1
e(d2, c3)e(d′2, c4)

e(d′1, c2)
.

If Cv is a re-encrypted ciphertext, let Cv = (C1, R, d
′
1, d2, d

′
2) and C1 =

(c1, c2, c3, c4, vk, σ). Check if
• Vrfyvk((c1, c2, c3, c4), σ) ?= 1, and
• e(d′1k, g)

?= e(g1, g2)e(F1(v1), d2)e(F2(vk), d′2).
If not, output ⊥. Otherwise, decrypt Cv by performing

k ← Decrypt’(μ, dv, R), K = E2(k), and M = c1
e(d2, c3)e(d′2, c4)

e(d′1K, c2)
.

Let m||b = E−1
1 (M). If b = 0, output m; otherwise, output ⊥. We define

Decrypt’ the same as Decrypt except that it outputs m if the decrypted
message ends with 1 and outputs ⊥ if it ends with 0.

We append an extra bit to the message in order to distinguish between the
encryption of messages and the encryption of re-encryption key. Then the ad-
versary can’t treat the challenge ciphertext as R to the decryption oracle and
get some information.

As the argument of IB-PRE-I, the proxy only needs to re-encrypt R to convert
the re-encrypted ciphertext to others. If the recipient can decrypt the ciphertext
to get k, then he can get m. This meets the multi-use property.

5.2 Security

The security proof of IB-PRE-II is like the proof of IB-PRE-I, except that the
adversary A can make additional queries to Reencrypt and Decrypt oracles.

Theorem 4. Suppose there is an adversary A that has advantage ε against the
game ExpA,IND-PrID-CCA. Then there is an algorithm B that breaks Wa-CCA-IBE
with advantage at least

AdvIND-ID-CCA
B ≥ ε/e(1 + qE),

where qE is the maximal number of A’s queries to Extract, and e is the base
of the natural logarithm. The running time of B is O(time(A)).

Proof. Assume that there is an adversary A breaking IB-PRE-II scheme. We
construct an algorithm B to break Wa-CCA-IBE scheme. Given the public pa-
rameter μ of Wa-CCA-IBE scheme, B performs the following steps. Note that
B maintains a table with tuples (β, v1, v2, d), where d is the re-encryption key.
Let ∗ denote the wildcard. Without loss of generality, we assume that an input
is queried to an oracle only once.
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1. Setup. Give the parameter μ to A.
2. Query phase 1. A can make the following queries.

(a) Extract(v): B first generates a random coin β so that Pr[β = 1] = δ
for some δ that will be determined later. If β = 0, or (0, v, ∗, ∗) or
(0, ∗, v, ∗) already exists on the table, B outputs a random bit and aborts.
Otherwise, B sends the query to the key extraction oracle of Wa-CCA-
IBE to get dv, and returns dv to A. B also records (1, v, v,⊥) on the
table.

(b) RKExtract(v1, v2): B chooses a random coin β as in the Extract.
If β = 1, or (1, v1, v1,⊥) or (1, v2, v2,⊥) already exists on the table, B
queries the key extraction oracle of Wa-CCA-IBE for v1, and then com-
putes the re-encryption key as the original scheme and returns it to A.
Otherwise, B returns a random re-encryption key dv1→v2 =
(x, y,Encrypt’(μ, v2, z)) for x, y ∈R G and z ∈R {0, 1}l. Finally, B records
the tuple (β, v1, v2, dv1→v2) on the table.

(c) Reencrypt(v1 , v2, Cv1): Let Cv1 = (c1, c2, c3, c4, vk, σ). If (∗, v1, v2, ∗)
does not exist on the table, B performs RKExtract(v1, v2) to get the
re-encryption key dv1→v2 . Then for the tuple (∗, v1, v2, dv1→v2), B uses
dv1→v2 to re-encrypt the ciphertext as the real scheme.

(d) Decrypt(v, Cv): If Cv is a regular encryption, B sends the ciphertext to
the decryption oracle of Wa-CCA-IBE for v, and returns the plaintext
to A if and only if it ends with ‘0’. If Cv is a re-encrypted ciphertext,
let Cv = (Cv1 , R, d

′
1, d2, d

′
2) and Cv1 = (c1, c2, c3, c4, vk, σ). If (0, v1, v, d̃)

exists on the table for any v1 and d̃ = (d̃1, d̃2, d̃3), B checks whether

e(d′1, g)
?= e(d̃1, g)e(F2(vk), d′2), d2

?= d̃2 and R
?= d̃3.

If the equations hold, B sends Cv1 to the decryption oracle of Wa-CCA-
IBE for v1, and returns the plaintext to A if and only if it ends with ‘0’.
Otherwise, B sends R to the decryption oracle of Wa-CCA-IBE scheme
for v to get k||1 (otherwise, return ⊥) and computes

M = c1
e(d2, c3)e(d′2, c4)

e(d′1K, c2)

for K = E2(k). If E1(M) = m||0 for some m, B returns m to A. Other-
wise, B returns ⊥.

3. Challenge. A sends (v∗,m0,m1) to B, if (1, v∗, v′, k) exists on the table for
any v′ and k, B randomly outputs a bit and aborts. Otherwise, B sends the
challenge (v∗,m0||0,m1||0) to the challenger of Wa-CCA-IBE. When the
challenger returns ciphertext C∗, B returns C∗ to A.

4. Query phase 2. A continues making the following queries, except for the
restrictions described in Definition 2.
(a) Extract(v): B answers queries as in the Query phase 1.
(b) RKExtract(v1, v2): For all v1 �= v∗, B queries the key extraction oracle

of Wa-CCA-IBE for v1, and then computes the re-encryption key as the
original scheme and returns it to A. For v1 = v∗, B returns a random



Identity-Based Proxy Re-encryption Without Random Oracles 201

re-encryption key dv1→v2 = (x, y,Encrypt’(μ, v2, z)) for x, y ∈R G, z ∈R

{0, 1}l, and records the tuple (0, v, v′, dv1→v2) on the table.
(c) Reencrypt(v1 , v2, Cv1): B answers queries as in the Query phase 1.
(d) Decrypt(v, Cv): B answers queries as in the Query phase 1.

5. Guess. When A outputs the guess b′, B outputs b′.

Since B aborts the game in the same conditions, by the proofs of Theorem 3 and
Lemma 1, B’s advantage is at least ε/e(1 + qE). �

6 Conclusion

In this paper, we propose two identity-based proxy re-encryption schemes with-
out random oracles. The schemes both satisfy the properties of unidirectionality,
non-interactivity and multi-use. The security of our schemes are based on the
underlying IBE schemes. The solutions answer the open problems left in the
previous work.
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Abstract. We study the provable security of identity-based (ID-based)
key agreement protocols. Although several published protocols have been
proven secure in the random oracle model, only a weak adversarial model
is considered – the adversary is not allowed to ask Session-Key Reveal
queries that will allow the adversary to learn previously established ses-
sion keys. Recent research efforts devoted to providing a stronger level of
security require strong assumptions, such as assuming that the simulator
has access to a non-existential computational or decisional oracle. In this
work, we propose an ID-based key agreement protocol and prove its se-
curity in the widely accepted indistinguishability-based model of Canetti
and Krawczyk. In our proof, the simulator does not require access to any
non-existential computational or decisional oracle. We then extend our
basic protocol to support ad-hoc anonymous key agreement with bilat-
eral privacy. To the best of our knowledge, this is the first protocol of its
kind as previously published protocols are for fixed group and provide
only unilateral privacy (i.e., only one of the protocol participants enjoy
anonymity).
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can be broadly categorised into key agreement protocols or key transport pro-
tocols depending on the nature of the session key (whether input to the session
key is required from only one party or all the participating parties).

The basis of many key establishment protocols relies on the Diffie–Hellman
key exchange and the RSA algorithm (e.g. see [14, Chapter 2]). In recent years,
elliptic curve cryptography has emerged as a promising branch of public-key
cryptography particularly due to its potential for offering similar security to
established public-key cryptosystems at reduced key sizes. We also observe an
emerging trend in the use of identity-based cryptography, such as a large num-
ber of identity-based key agreement protocols based on pairings [5]. The public
keys in ID-based system are arbitrary bit-strings and can include any descrip-
tive information such as temporal information. The corresponding private key
is then generated by a trusted key generation center (KGC). The strength of
ID-based systems in terms of a simplified key management system (i.e., no pub-
lic key certificates required) is also one of its weaknesses. Users are not allowed
to generate their own private keys and therefore key escrow is inevitable. Key
agreement protocols help to establish a session key that may not be under KGC’s
escrow.

We now highlight two other on-going research problems in the design of ID-
based key agreement protocols, the focus of this paper.

Security issues: Session-Key Reveal and Session-State Reveal queries
The purported security of many ID-based protocols for two parties is proven in
a weak variant of Bellare–Rogaway (BR) model [3] in which the adversary is not
allowed to ask any Session-Key Reveal1 query [5]. Protocols proven secure in such
a restricted model (hereafter referred to as the wBR model) do not provide the
known-key security attribute, meaning that compromise of previously accepted
session keys may affect the security of a non-related session.

To better explain the Session-Key Reveal (and the stronger notion of Session-
State Reveal queries in the Canetti–Krawczyk model), we recall the unauthen-
ticated Diffie-Hellman key exchange protocol as described in Figure 1. In the
protocol, all arithmetic is performed modulo a large prime p with q being the
prime order of g, ∈R denotes choosing an element uniformly at random from
the corresponding domain, K denotes a key derivation function (which can be
realized by a hash function mapping to the secret key domain of some symmet-
ric cryptographic scheme), and sk denotes the session key established at the
conclusion of the protocol execution.

We now execute the protocol described in Figure 1 twice. Two independent
sessions with the respective session keys, sk1 = gab and sk2 = ga′b′

, where
a �= a′, b′ and b �= a′, b′, were established. We assume that there exists a malicious
adversary who is interested to learn the session key associated with one of the
sessions, e.g., sk1 = K(gab) – the session key associated with the first session.

1 The Session-Key Reveal query allows the adversary to learn previously established
session keys.
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a ∈R Zq
ga

−−−−−−−→ b ∈R Zq

sk = K((gb)a)
gb

←−−−−−−− sk = K((ga)b)

Fig. 1. Diffie–Hellman Protocol

– In a security model that allows the adversary to ask the Session-Key Reveal
query, the adversary is allowed to learn session key associated with any non-
related session, i.e., sk2 = K(ga′b′

).
– In a security model that allows the adversary to ask the Session-State Reveal

query, the adversary is allowed to learn the ephemeral parameters of any
non-related sessions. In this case, the adversary is allowed to learn either the
ephemeral DH keys, a′ and b′, or the keying material ga′b′

, if they have not
been erased from the internal state of the respective entity.

The significance of Session-State Reveal queries stems from the fact that a user
may decide to store the pre-computed results to be used in future session key
establishment for efficiency. These parameters, often not protected as securely
as the long-term private key, may be exploited by the adversary. Such a query
is designed to consider the leakage of such ephemeral parameters.

It is common practice to prove the strongest security that we can claim about
any cryptographic scheme and this seems a sound principle to follow in the case
of ID-based key agreement protocols. It is therefore not surprising that we ad-
vocate the importance of proving ID-based protocols secure in a security model
that allows the adversary to ask both the Session-Key Reveal and Session-State
Reveal queries. Protocols proven secure in such a model will also assure proto-
col implementers that they provide known-key security attribute and provide
resilience against the leakage of ephemeral parameters.

Privacy issues: Confidentiality of identity
Anonymity is required in many applications to ensure that the identifying infor-
mation about the user is not revealed. This concept is also useful and applicable
to key agreement protocol. Suppose two entities, U and V , want to exchange
confidential messages. In anonymous key agreement protocols such as the proto-
cols of Boyd and Park [7] and of Shoup [29], U ’s identity is not known to anyone
in the network except V – the recipient entity in the key agreement protocol.

This work considers anonymity from a slightly different perspective. Although
V knows that U is a member of a group of users, V is unable to confirm the actual
identity of U . This class of protocol is useful when V only needs to ensure the
membership of the sender, but not the identity of the user perhaps due to privacy
issues. Our protocol provides deniability [6] for any user who has taken part in
a protocol run to deny that this was the case, since any one can simulate runs
of the protocol involving any other potential user.
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2 Related Work and Our Contributions

2.1 Session-Key Reveal and Session-State Reveal Queries

Recent research efforts have been devoted towards designing protocols that can
be proven secure in a model that allows the Session-Key Reveal queries. For exam-
ple, the ID-based protocols of Chen and Kudla [9] and McCullagh and Barreto
[25] were improved [17] to ensure that these protocols can be proven secure in a
less restrictive sense (the adversary is allowed to ask Session-Key Reveal queries in
most cases) in the random oracle model, assuming bilinear Diffie-Hellman prob-
lem is intractable. The technicality of not being able to answer reveal queries in
some special sessions can be resolved using the gap assumption – the underly-
ing computational problem is intractable even with the help of a corresponding
decisional oracle.

Using the gap assumption, Kudla and Paterson [23] propose a generic trans-
formation turning two-party Diffie–Hellman-based protocols proven secure in the
wBR model to one in the full BR model. This is also applicable to two-party ID-
based protocols such as the protocols of Chen and Kudla [9] and McCullagh and
Barreto [25]. However, gap assumption in [9] and [25] means the simulator has
access to a decisional bilinear Diffie-Hellman oracle (in contrast with decisional
Diffie-Hellman oracle that can be realized by some classes of pairing). This result
also matches with the observation raised by Chow ([18] as cited in [17]).

Along somewhat similar line, Wang [32] proposes a protocol based on a deci-
sional problem by using a computational oracle to support the Session-Key Reveal
queries. Again, the simulation in this proof requires the existence of a special
oracle. Finally, we note that Cheng et al. [12] introduce the concept of coin
queries that forces the adversary to reveal its ephemeral secret, and thus making
Session-Key Reveal possible. Their approach is restricted in the sense that the
possibility of breaking a protocol without knowing the ephemeral secret (which
is possible in a real world attack) is not modelled.

The Session-State Reveal query in the Canetti–Krawczyk model (hereafter
referred to as the CK model) [8] allows an adversary to learn the ephemeral
parameters associated with a particular session. An example of a protocol se-
cure in this stronger model2 is the HMQV protocol [22], which is the “hashed”
variant of the MQV protocol3. The basic version of HMQV is proven secure even
if the adversary is allowed to ask Session-Key Reveal queries under the compu-
tational Diffie-Hellman assumption. The enhanced version of HMQV is proven
secure even when the adversary learns the ephemeral Diffie–Hellman key asso-
ciated with any non-target sessions, under the gap Diffie-Hellman assumption
and knowledge of exponent assumption [2]. No security claim is, however, made
about the availability of the keying material for the derivation of the session key.

Our contribution: High-performance ID-based key agreement protocol
We propose a new ID-based key agreement protocol. Security assurance of the
protocol is provided in the stronger CK model, which allows the adversary to
2 The relative strengths between the BR and CK models are discussed in [16].
3 MQV’s security is analyzed [24], without consideration of Session-State Reveal query.
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ask Session-Key Reveal queries in all cases, and Session-State Reveal queries in
most cases, without employing any gap assumption. We show how to provide
KGC forward secrecy by making minor modifications to the (basic) protocol.
Additional parameters included in our session state definition are the ephemeral
Diffie–Hellman (DH) key of the outgoing DH values and the keying material
for the key derivation. Among the ID-based two-party protocols surveyed in
[5], our proposed protocols achieve the strongest security properties without
compromising on efficiency.

2.2 Anonymous Key Agreement Protocols

To illustrate the usefulness of our proposed key agreement protocols, we now
consider the scenario of delegates making and receiving phone calls on their
mobile phones while international roaming. Before secure roaming can be estab-
lished, the service provider must verify whether the roaming user is a legitimate
subscriber with the respective home server. Conventional anonymous roaming
mechanisms [1,26] are rather inefficient as users would have to wait online while
foreign telecommunication network communicates with the original home server
to authenticate the users. These geographically distributed servers also generate
extra network traffic during this process. At the same time, it is inconvenient to
constantly renew the alias in an unlinkable manner to hide the identities.

Our proposed key agreement protocols with the anonymity feature allow user
to “hide” among a group of subscribers associated with the same home server.
Moreover, after the home server has issued sets of matching public/private key
pair at the very beginning, the home server is no longer required to be online. Our
approach does not, however, appear to be scalable if one needs to hide among
all (a potentially large set of) legitimate subscribers, and may not be flexible
since it is natural that the set of subscribers is constantly changing. Both issues
can be readily solved without an a priori group formation step. For example,
any legitimate user will be able to spontaneously conscript an arbitrary group of
users (i.e., without cooperation from other parties in the group) for each session.
Such ad-hoc group formation empowers a user to have full control over the level
of anonymity desired during the secure roaming establishment process.

Although alias should also be used in our approach so that the list of users can
be made available to users without revealing any user information, no renewal
of alias (and possibly renewal of credential) is necessary as different invocations
are unlinkable (guaranteed by the unconditional anonymity of our protocol).

Our contribution: Key agreement protocol with bilateral privacy
Motivated by the various applications of anonymous roaming and our observa-
tion that existing research (e.g., see [11]) appears to focus only on unilateral
identity privacy (i.e., only one protocol participant enjoys anonymity), we pro-
pose a secure key exchange among anonymous users in different spontaneous
groups. Spontaneity and bilateral privacy features in our proposed protocol are
particularly applicable in ad-hoc group communication settings. Furthermore, as
noted in the literature of ID-based ring signature (e.g., [20]), ID-based solution
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provides a higher level of spontaneity and efficiency than conventional public
key cryptosystem since one can conscript virtually anyone and no verification
of public key certificates is required. With these benefits in mind, we introduce
the notion of ID-based ad-hoc anonymous key agreement with bilateral privacy,
which is realized by an extension of our basic protocol. Note that our approach
is fundamentally different from that of Cheng et al. [11].

3 Number Theoretic Assumptions

Let G be an additive group of prime order q and GT be a multiplicative group
also of order q. We assume the existence of an efficiently computable bilinear
map ê : G×G → GT such that

1. There is an known element P ∈ G satisfying ê(P, P ) �= 1GT .
2. For Q,W,Z ∈ G, both ê(Q,W +Z) = ê(Q,W ) · ê(Q,Z) and ê(Q+W,Z) =

ê(Q,Z) · ê(W,Z).

Definition 1 (Interactive Game with a BDH Challenger [11]). Let A be
a pair of probabilistic polynomial-time (PPT) algorithms (A1(r1; . . .),A2(r2; . . .)),
where ri is used by Ai as the random tape, that engages with a challenger in the
following game. Let (P, aP, bP, cP ) be the BDH instance where P, aP, bP, cP ∈ G

and a, b, c ∈ Z∗
q. The game is defined as follows.

Stage 1: (X,σ)← A1(r1;P, aP, bP, cP, ê,G,GT , q) (σ denotes some state)
Interactive Part: After seeing X, challenger returns a random h←R Z∗

q .
Stage 2: K ← A2(r2;h, σ).

We say that the adversary, A, wins the game if it computes K = ê(aP,X+hbP )c.

If X is determined after seeing h, the problem is easy since one can set X =
rP − hbP for r ∈R Z∗

q , and returns K = ê(aP, cP )r. It explains the game’s
interactive nature.

The following lemma says that if the BDH problem is hard, any adversary
can only have a negligible advantage in winning the interactive BDH game. The
proof is similar to the one presented in [11].

Lemma 1 (Interactive BDH Game Assumption). For any adversary with
PPT algorithm (A1,A2) with advantage ε(k) to win the interactive BDH game,
there exists an algorithm that solves BDH problem with probability ε(k)2.

Proof. Given a BDH problem instance (P, aP, bP, cP, ê,G,GT , q), we construct
a BDH solver B making use of (A1,A2) as follows.
B starts by choosing two elements h and h′ randomly from Z

∗
q . B calls (X,σ)

← A1(r1;P, aP, bP, cP, ê,G,GT , q) and K ← A2(r2;h, σ). B now rewinds the
adversary backs to the point before A2 is called. A2 is then executed again with
h′ to get K ← A2(r2;h′, σ). Since h and h′ are chosen independently from X and
σ, the probability each of two executions of A2 returns a valid answer is at least
ε(k). Under such condition, K = ê(aP,X + hbP )c and K ′ = ê(aP,X + h′bP )c.
Ignoring the negligible probability that h = h′, ê(aP, bP )c can be obtained by
(K/K ′)(h−h′), i.e., B solves BDH problem with probability ε(k)2. ��



Strongly-Secure Identity-Based Key Agreement and Anonymous Extension 209

In the proofs of Kudla and Paterson [23] and Wang [32], the required (decisional
BDH) oracle, in which the simulator has access, has no known polynomial time
realization. Their assumptions are non-falsifiable whilst in our case, we only
assume the BDH problem is intractable, something that can be falsified.

We also consider a variant of the BDH problem, the Modified Bilinear Diffie-
Hellman(MBDH) problem, for the proof of our escrow-free protocol.

Definition 2 (Modified (Computational) Bilinear Diffie-Hellman
(MBDH) Problem [21]). Given (P, aP, bP, cP, c−1P ), output ê(P, P )abc ∈ G2.

Computational and decisional MBDH problems were first proposed in [21] to
realize the first ID-based signcryption scheme with forward-secrecy and public
ciphertext authenticity. In this paper, we reduce the security of our escrow-free
protocol to an interactive MBDH assumption, which is defined in a way similar to
Definition 1 (adding an extra element to be supplied to the adversary) to support
KGC forward-secrecy. We have the following result as described by Lemma 2.

Lemma 2 (Interactive MBDH Game Assumption). For any adversary
with PPT algorithm (A1,A2) with advantage ε(k) to win the interactive MBDH
game, there exists an algorithm that solves MBDH problem with probability ε(k)2.

4 High Performance ID-Based Key Agreement Protocol

4.1 Basic Construction

Setup: On input a security parameter k, KGC uses a BDH instance generator to
generate (G,GT , ê) where G and GT are groups of prime order q and ê : G×G →
GT is the pairing function. KGC also chooses two cryptographic hash functions
H : {0, 1}n → G and H0 : G × {0, 1}∗ → Z∗

q and a key derivation function K.
All three of these are modelled as random oracles. Then KGC randomly chooses
an arbitrary generator P of G. An element s is randomly chosen from Z

∗
q as the

KGC’s master secret, and the corresponding public key is Ppub = sP . Finally, the
set of public parameters is published as params = 〈G,GT , q, ê, P, Ppub,H,H0,K〉.

Extract ([4]): On inputs an identity IDA and a master secret s, the public key
QA (for A) is set as H(IDA), and the corresponding private key SA is sH(IDA).

Key Agreement: Our proposed high performance identity-based key agreement
protocol is described in Figure 2. The notation used in the protocol is as follows:
(QU , SU ) denotes the public/private key pair for protocol participant U , skU

and sidU denote the session key and session identifier for protocol participant U
respectively and || denotes the concatenation of messages.

4.2 Security Evaluation: An Overview

The simulator, S, knows how to answer all but one Corrupt queries, IDJ . The hard
problem will be embedded in one of the sessions having IDJ as the responder.
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Initiator A Responder B

a ∈R Z
∗
q ; WA := aQA

IDA, WA−−−−−−−→ b ∈R Z
∗
q ; WB := bQB

hA := H0(WA, IDB) hA := H0(WA, IDB)

sidB := IDA||WA||IDB ||WB

skB := K(ê(WA + hAQA, (b + hB)SB))

hB := H0(WB , IDA)
IDB, WB←−−−−−−− hB := H0(WB, IDA)

sidA := IDA||WA||IDB ||WB

skA := K(ê((a + hA)SA, WB + hBQB))

skA = K(ê(QA, QB)s(a+hA)(b+hB)) = skB

Fig. 2. Proposed high-performance identity-based key agreement protocol

Note that neither the Session-Key Reveal queries nor the Session-State Reveal
queries are allowed for this test session. For all other sessions having IDJ as the
responder, S can correctly answer the queries asked since all state information
and the private key of the initiator IDI are known to S.

The tricky part is answering queries directed at the sessions where IDJ acts as
the initiator. S can, however, faithfully simulate the protocol execution by defin-
ingWJ before the output of the corresponding random oracle queryH0(WJ , IDK)
is defined. S can then compute the session key in some way different from the
protocol specification to answer the Session-Key Reveal query. As an abnormal
way is used, answering the Session-State Reveal query correctly is not possible
and this is our only restriction on simulating the Session-State Reveal queries.

Theorem 1. The protocol described in Figure 2 is secure assuming that the
BDH problem is hard 4 and H, H0, and K are modelled as random oracles.

Proof. Assuming that there exists an adversary A with a non-negligible advan-
tage against our protocol described in Figure 2, we construct a simulator, S,
against the interactive game with a BDH challenger (the BDH problem instance
is (P, xP, yP, zP ) and the last part of the challenge is h), using A as a subroutine.
S now simulates the view of A by answering the following queries of A.

Setup: xP is assigned to be the public key of the KGC.

H queries: If an H query is previously asked, then the stored answer in the
list LH will be returned. Denote the Ith distinct H query by IDI . For IDJ , S
responses with yP ; otherwise, S chooses ri ∈R Z∗

q , stores it in the list LH along
with IDI , and outputs riP .

H0 queries: S maintains a list LH0 to ensure that previously asked queries would
receive the same answer. However, special value may be plugged into the list in
4 Recall that in the result of Lemma 1, we assume the BDH problem is hard. By doing

so, we also assume a negligible advantage in the interactive BDH game.
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the simulation of the Send queries with IDJ as the initiator and IDK as the
responder.

K queries: S just needs to ensure the random oracle property of K, by main-
taining a list LK to ensure that previously asked queries will receive the same
answer. It can be seen from the rest of the proof that the simulator knows the
keying materials for all sessions, while the test session is the only exception.

Corrupt queries: The simulation fails (event I) if the request is IDJ , otherwise
the corresponding ri is retrieved from the list LH and ri(xP ) is returned.

Send queries (IDI as initiator and IDJ as responder): Since S can compute the
private key of IDI so the simulation can be done as a typical protocol invocation.
Except for the following special handling for the N th invocation, τ is chosen
randomly from Z∗

q and WI,N = rIτ(zP ) is returned. After WJ,N is obtained, if
(WJ,N , IDI) can be found in list LH0 , the simulation fails (event II). Otherwise,
S dumps all maintained lists and system parameters to the tape σ, then outputs
(X,σ) where X = WJ,N . The interactive BDH challenger returns h ∈R Z∗

q . S
reconstructs all the lists and system parameters from σ, and setH0(WJ,N , IDI) =
h, which is also denoted as hJ,N .

Send queries (IDJ as initiator and IDK as responder): In this case, S knows
neither the private key of the initiator IDJ , nor the ephemeral Diffie-Hellman
key of the responder IDK . However, S can still do a faithful simulation by ma-
nipulating the random oracle. Suppose it is the 
th invocation of the protocol
initiated by IDJ and responded with IDK . S selects α�, hJ,� ∈R Z∗

q , responses
with WJ,� = α�P − hJ,�QJ , and stores hJ as the response of H0 corresponding
to the query (WJ,�, IDK). α� is also stored in the auxiliary list corresponding to
the Πn

J,K session.

Session-Key Reveal queries: For session having IDI as initiator and IDJ as re-
sponder, and if this is not the N th invocation, S simply uses the private key
of IDI to answer the query asked by A since S knows the ephemeral Diffie-
Hellman key chosen; otherwise, it fails (event III). For the case (IDJ , IDK),
suppose hJ,� = H0(WJ,�, IDK) and hK,� = H0(WK,�, IDJ). S retrieves α� and
returns K(ê(α�(xP ),WK,� + hK,�QK)). Consistency can be easily seen:

K(ê(α�(xP ),WK,� + hK,�QK)) = K(ê(α�P, WK,� + hK,�QK)x)

= K(ê(α�P − hJ,�QJ + hJ,�QJ , WK,� + hK,�QK)x)

= K(ê(WJ,� + hJ,�QJ , WK,� + hK,�QK)x).

Session-State Reveal queries: For session having IDI as initiator and IDJ as re-
sponder, it is trivial to obtain the ephemeral Diffie-Hellman key, except for the
N th invocation where S will fail (event IV). For (IDJ , IDK), it is not supported.
S knows all the outgoing and incoming DH values, even for the N th invocation

between IDI and IDJ and invocations between IDJ and arbitrary IDK . S also
knows the keying material for all sessions, except the N th invocation (event IV).
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Test queries: Suppose hI,N = H0(WI,N , IDJ ) and hJ,N = H0(WJ,N , IDI) = h.
If A does not choose the session ΠN

I,J , S aborts (event V). ΠN
I,J should hold a

session key of the following form.

K(ê(WI,N + hI,NQI ,WJ,N + hJ,NQJ)x)=K(ê(rIα(zP )+hI,NrIP,X+hyP )x)

= K(ê((αz + hI,N )rIP,X + hyP )x) = K(ê(xP,X + hyP )(αz+hI,N )rI ).

S cannot compute K(ê(xP,X + h(yP ))z(rIα)) by itself without the assistance of
A. Therefore, S is unable to return the real session key. A random key drawn
from session key distribution (range of K) will be returned instead.

Answering interactive BDH challenger: If S does not abort and A is able to
distinguish between real session key and random session key (with probability
ε(k)), then A must have queried the key derivation oracle K for the keying mate-
rial ê(xP,X + hyP )(αz+hI,N )rI = ê(xP,X + h(yP ))z(rIα)ê(xP,X + h(yP ))hI,N rI

(we ignore the small probability that A correctly guess this value without mak-
ing the corresponding K query – a standard argument in random oracle model).
Now S randomly chooses one of A’s K’s queries π. If S is lucky enough that π is
the above keying material (event VI), S answers the interactive BDH challenger
correctly with (π/(ê(xP,X + h(yP ))hI,N rI )1/(rIα).

Probability analysis:

I. If event V does not occur, neither does event I.
II. Let NH be the number of H0 queries and k be the security parameter,

collusion would not occur with probability (2k −NH)/2k.
III. If event V does not occur, neither does event III.
IV. If event V does not occur, neither does event IV.
V. Let NC be the number of sessions created, A chooses the session ΠN

I,J with
probability 1/NC.

VI. Let NK be the number of key derivation oracle queries, event VI occurs
with probability 1/NK.

S wins the game if event II and V does not occur but event VI occurs. If A is
able to have an advantage ε(k) against our protocol, then S can also win with
an advantage of at least ε(k)(2k−NH)

NCNK2k . However, since such an adversary A does
not exist, the proof for Theorem 1 follows easily. ��

Key compromise may lead to another problem. When the long-term key of an
entity, A, is compromised; the adversary may be able to masquerade not only as
A but also to A as another party, B. Our protocol is resistance to such attacks.

Theorem 2. The protocol described in Figure 2 provides key compromise im-
personation resilience (KCIR) assuming that the BDH problem is hard and H,
H0, and K are modelled as random oracles.
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Proof. Following the approaches of Chen and Kudla [9] and Krawczyk [22], we
make a slight modification to the security model to capture KCIR – A is allowed
to corrupt the initiating party, IDI . The simulation by S will not abort even if
A requested for the private key of IDI . Therefore, the proof for Theorem 1 will
not be invalidated by this change and Theorem 2 follows. ��

4.3 Forward-Secrecy and Escrow-Freeness

Although an adversary can masquerade as the compromised entity once the
latter’s long-term key has been compromised, we do not want the adversary
to also obtain previously accepted session keys. Protocols that prevent this are
said to provide forward secrecy. As there is usually a computational cost in
providing perfect forward secrecy, it is sometimes sacrificed and a weaker notion
is considered. One example is partial forward secrecy whereby the compromise
of one long-term private key or both ephemeral secrets of the communicating
parties does not lead to the leakage of previously accepted session keys. No such
protection is made when both parties’ long-term keys are compromised. This
notion is considered in existing ID-based protocols such as those of Chen and
Kudla [9]. For our basic protocol, the proof of indistinguishability allows the
adversary to ask Corrupt query for the IDI associated with the test session, it
follows that our protocol also achieve partial forward-secrecy.

There is an additional concern in forward secrecy for ID-based protocols when
compared with those in conventional public key cryptography – the master secret
of the KGC is another secret that can be compromised. When this happens, the
long-term keys of all users will be compromised although it may be possible
that no previously accepted session keys are deduced. Achieving this notion also
mean that the key agreement protocol is escrow-free, assuming that there is no
active attack by the KGC (e.g., by actively impersonating a user). A protocol
is said to provide KGC forward secrecy (KGC-FS) if it retains confidentiality of
previously accepted session keys even when the master secret of the KGC is
compromised. It is easy to see that our protocol described in Figure 2 does not
provide KGC-FS since any adversary with the knowledge of s will be able to
compute ê(WA + hAQA,WB + hBQB)s = ê(QA, QB)s(a+hA)(b+hB).

KGC-FS implies forward secrecy in the usual sense since all users’ private
keys can be computed with the master secret. It has been noted that two-party
protocols with only two-message flow and having no previous establishment of
secure shared state cannot achieve perfect forward secrecy [22]. Our protocol,
having only two messages in the message flow, inherently cannot achieve perfect
forward secrecy, not to say perfect KGC-FS. Here we consider weak KGC-FS,
such that the previously established sessions without the active involvement of
the adversary cannot be “recovered” even if the long-term key is compromised.
We adopt the approach of Chen and Kudla [9] to give our protocol the same
level of KGC-forward-secrecy as their protocol. The new protocol is described
in Figure 3, with the underlined value indicates the changes from Figure 2.
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Initiator A Responder B

a ∈R Z
∗
q ; WA := aQA; TA := aP

IDA, WA, TA−−−−−−−→ b ∈R Z
∗
q ; WB := bQB; TB := bP

hA := H0(WA, TA, IDB)

sidB := IDA||WA||TA||IDB ||WB ||TB

skB := K(ê(WA + hAQA, (b + hB)SB), bTA)

hB := H0(WB, TB, IDA)
IDB, WB, TB←−−−−−−−

sidA := IDA||WA||TA||IDB ||WB ||TB

skA := K(ê((a + hA)SA, WB + hBQB), aTB)

skA = K(ê(QA, QB)s(a+hA)(b+hB), abP ) = skB

Fig. 3. Proposed escrow-free high-performance identity-based key agreement protocol

Informally, the protocol described in Figure 3 provides KGC-FS at the expense
of two additional offline scalar-point multiplications and one online scalar-point
multiplication. Learning s will not help the adversary in computing K(ê((a +
hA)QA, (b+ hB)QB)s, abP ) as finding abP means the CDH problem is solvable
(since both a and b are deleted from the internal states upon completion of the
protocol execution). Using the same exponent in the elements T and W allows a
saving of one pseudorandom number generation and hence, faster exponentiation
operation using the same exponent is possible. Security assurance is given by the
following three theorems. Proofs are presented in the full paper [19].

Theorem 3. The protocol described in Figure 3 is secure assuming that the
Modified (Computational) Bilinear Diffie-Hellman (MBDH) problem is hard and
H, H0, and K are modelled as random oracles.

Theorem 4. The protocol described in Figure 3 provides weak KGC-forward-
secrecy (KGC-FS) assuming that the Computational Diffie-Hellman (CDH) prob-
lem is hard and H, H0, and K are modelled as random oracles.

Theorem 5. The protocol described in Figure 3 provides key compromise imper-
sonation resistance assuming that the Modified Bilinear Diffie-Hellman (MBDH)
problem is hard and H, H0, and K are modelled as random oracles.

4.4 Comparison with Existing Protocols

Table 1 describes the summary of comparison between several two-party ID-
based protocols with two message flows. M denotes scalar-point multiplication,
H denotes MapToPoint function [4] hashing identity to a point on an elliptic
curve, and P denotes pairing in the table. Off-line computation can be pre-
computed before the execution of the protocol, which includes public key deriva-
tion. Note that pairings are expensive and should be avoided whenever possible.
MapToPoint is slightly more expensive but its cost is still comparable with that
of scalar-point multiplication.
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Table 1. Security and efficiency for two-party, two-message ID-based protocols

Protocol Computation ForwardKCIRProof/
On-line Off-line Public KeySecrecy Attack

Our protocol #1 1M + 1P 2M 1H FS Yes CK

Our protocol #2 2M + 1P 3M 1H wKGC Yes CK

Wang [32] 2M + 1P 1M 1H FS Yes BR

The following protocols are proven secure in a restricted model.
Chen-Kudla #2 [9] 1P 2M 1H No Yes wBR

Chen-Kudla #2’ [9] 1M + 1P 3M 1H wKGC No wBR

McCullagh-Barreto #1 [25] 1P 2M 1M FS No wBR

McCullagh-Barreto #2 [25] 1P 2M 1M ? 5 No wBR6

The following protocols do not have any security proofs.
Smart [30] 1P 2M + 1P 1H No Yes No

Chen-Kudla #1’ [9] 1M + 1P2M + 1P 1H wKGC Yes No

The following protocols are broken.
Yi [34] 1M + 1P 2M 1H See [19]

Choie et al. #1 [13] 1M + 2P 2M 1H See [5]

Choie et al. #2 [13] 2M + 1P2M + 1P 1H See [5]

Shim [27] 1P 2M 1H See [31]

Xie #1 [33] 1P 3M 1M See [28]

Xie #2 [33] 1P 3M 1M See [28]

The notation wBR denotes a restricted variant of the BR model whereby
Session-Key Reveal query is not supported, FS denotes user forward secrecy while
wKGC denotes weak KGC forward secrecy, and KCIR denotes key compromise
impersonation resistance.

As shown in Table 1, among the “unbroken” ID-based protocols that provide:

KCIR and FS (not KGC-FS). Our protocol described in Figure 2 and Wang’s
protocol [32] are the most efficient. However, our protocol is based on a
milder assumption and yet proven secure in a stronger model, which makes
it more attractive than that of Wang’s.

KCIR and KGC-FS. Although our protocol described in Figure 3 is a bit less
efficient than that of Chen and Kudla [9] protocol #2’, our protocol is proven
secure in a stronger model (allowing the adversary to ask the Session-State
Reveal query).

5 Ad-Hoc Anonymous Key Agreement Protocols

This section describes our extended protocol for ad-hoc anonymous key agree-
ment based on the ID-based ring signature scheme of Chow et al. [20].

5 No formal proof is given, it is unclear that whether the protocol can achieve anything
stronger than weak KGC-FS.

6 It is secure in the wBR model if the mistakes in its proof are corrected.[10,17].
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5.1 Our Extension

In an ad-hoc anonymous key agreement protocol, the initiator conscripts a set
of users – the initiating ring – and similarly the responder hides in a responding
ring. Let Aj be a member of the initiating ring A = {A1, A2, . . . , AJ} and Bk

be a member of the responding ring B = {B1, B2, . . . , BK}. Note that J can be
different from K. For the security proof, we require each user to derive a value ψ
in each session that is different from the values chosen in previous sessions with
overwhelming probability. The values of Aj and Bk are denoted by ψA and ψB

respectively. Canetti and Krawczyk suggested such a pair of (ψA, ψB) constitutes
a unique session identifier for each session in practice8.

1. Aj chooses Ui ∈R G and computes hi = H0(Ui, B, ψA), ∀i ∈ {1, . . . , J}\{j}.
2. Bk then picks Vi ∈R G, computes ci = H0(Vi, A, ψB), ∀i ∈ {1, . . . ,K} \ {k}.
3. Aj chooses r′j ∈R Z∗

q , computes Uj = r′jQAj −
∑

i�=j{Ui + hiQAi}.
4. Similarly, Bk chooses r′j ∈R Z∗

q , computes Vk = r′kQBk
−
∑

i�=k{Vi + ciQBi}.
5. Aj and Bk exchange

⋃
i∈{1,...,J} {Ui} and

⋃
i∈{1,...,K} {Vi}

6. Aj and Bk compute session key skA and skB respectively as in (♠) and (♥).

skA = K(ê((r′j + hj)SAj ,

K∑
i=1

(Vi + ciQBi))) · · · (♠)

= K(ê(r′jQAj + hjQAj ,
K∑

i=1

(Vi + ciQBi))
s)

= K(ê(Uj +
∑
i�=j

{Ui + hiQAi}+ hjQAj ,

K∑
i=1

(Vi + ciQBi))
s)

= K(ê(
J∑

i=1

(Ui + hiQAi),
K∑

i=1

(Vi + ciQBi))
s)

= K(ê(
J∑

i=1

(Ui + hiQAi), Vk +
∑
i�=k

{Vi + ciQBi}+ ckQBk
)s)

= K(ê(
J∑

i=1

(Ui + hiQAi), (r
′
k + ck)SBk

))

= K(ê(
J∑

i=1

(Ui + hiQAi), r
′
kQBk

+ ckQBk
)s) = skB · · · (♥)

5.2 Security Attributes

For simplicity, we assume both rings are of the same size, n. Apart from the
conventional security properties for key agreement protocols, the security of ad-
hoc anonymous key agreement protocols also depend on 1-out-of-n anonymity
8 See [15] for a detail discussion on session identifier in key establishment protocols.
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as described in Definition 3. These properties can be seen as a natural exten-
sion from the security requirements of key agreement protocol and those of ring
signatures (e.g., see [20]).

Definition 3 (Security Attributes of Ad-Hoc Anonymous Key Agree-
ment Protocols). An ad-hoc anonymous key agreement protocol is secure if
below conditions are satisfied.

1: Validity. If two uncorrupted oracles complete matching sessions, then both
oracles must hold the same session key.

2: Indistinguishability. For all probabilistic, polynomial time adversaries, A,
the advantage of A, AdvA(k), in game G9 is negligible. In particular, this
implies 1-out-of-n authenticity: for all probabilistic, polynomial time ad-
versaries, A, without any one of the n private keys, has negligible advantage
in learning about a fresh session key.

3: 1-out-of-n Anonymity. An ad-hoc anonymous key agreement protocol is
said to have unconditional anonymity if for any group of n users, any ad-
versary A (including the responder and the KGC) is unable to identify the
real initiator better than a random guess, i.e., A can guess the identity of
the initiator correctly with probability no better than 1

n , or 1
n−1 if A is in the

ring. If the protocol satisfies bilateral privacy, the same requirement applies
on the responding party.

It is straightforward to see that our proposed protocol is valid. The indistin-
guishability and the 1-out-of-n anonymity properties are formally captured by
Theorems 6 and 7 respectively. The proofs can be found in the full paper [19].

Theorem 6. The protocol described in Section 5.1 achieves indistinguishability
assuming that the Bilinear Diffie-Hellman (BDH) problem is hard and H, H0,
and K are modelled as random oracles.

Theorem 7. The protocol described in Section 5.1 provides 1-out-of-n anonymity
unconditionally.

We remark that it is also possible to equip this protocol with weak KGC forward
secrecy by using the trick presented in Section 4.3. However, previously used
ephemeral parameters should not be re-used for full-protection of the anonymity
(since the exponent of the element Vi corresponding to the real identity is un-
known, established a key using the knowledge of an exponent excludes one pos-
sibility for the real identity).

6 Conclusion and Future Work

In conclusion, we had proposed a new identity-based (ID-based) key agreement
protocol, proven secure in the Canetti–Krawczyk model that allows the adversary
access to the Session-Key Reveal and Session-State Reveal queries. Our protocol is
9 Definition can be found in the Appendix of the full paper [19].
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the first to be proven secure against such a strong adversary without employing
any gap assumption. Using the approach of Chen and Kudla [9], we show how to
provide KGC forward secrecy for our proposed ID-based protocol. As a result,
both proposed protocols are efficient and yet proven secure in the strongest model
among other previously published two-party two-message ID-based protocols
with similar security attributes claim.

Motivated by the need for a better anonymous roaming mechanism and our
observation that existing research appears to focus only on unilateral identity
privacy, our basic protocol is extended to realize the first ad-hoc anonymous
ID-based key agreement protocol with bilateral privacy.

Directions for future work include the following:

1. Our protocol only support the Session-State Reveal queries partially under
the BDH assumption. We have seen examples of gap assumptions achieving a
higher level of security. For example, the security proof of the Diffie–Hellman-
based HMQV protocol is strengthened when the underlying assumption is
changed from computational Diffie-Hellman assumption to its gap version
[22]. It will be interesting to check if our protocol can also be strengthened
by using the gap BDH assumption.

2. Finding more real-world applications for our proposed ID-based ad-hoc
anonymous key agreement protocol.
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Abstract. We show in this paper that if the primes share their some bits
(e.g. Least-Significant bits), RSA system with small private-exponent is
much more vulnerable to the Boneh-Durfee Attack.

1 Introduction

Since 1978, RSA public key cryptosystem has been widely used in various cryp-
tosystems. However, it is computationally expensive whenever it is used for the
encryption or the signature. So researchers are working hard to study how to
speed up RSA algorithm and how to implement RSA system in the modern
portable devices with low computational power which need to perform cryp-
tographic operations, such as smart cards and mobile phones. Perhapes the
simplest method to speed up RSA is shortening the public-exponent e or the
private-exponent d. Shortening the public-exponent e may speed up the encryp-
tion, while shortening the private-exponent d may speed up the signature. And
a small exponent may save the precious memory of these devices.

In 1990, Wiener [14] showed that if the private-exponent d < N0.25, one may
disclose d in polynomial time from e and N , where N = p · q denotes the public
modulus in RSA cryptosystem, p, q are two large primes. In 1999, Boneh and
Durfee [1] presented an improvement which made the upper bound up to 0.292.
That means if d < N0.292, the private-exponent d may be found in polynomial
time. Their method is based on the lattice-based work by Don Coppersmith
[2]-[4] to find small foots to low-degree bivariate modular polynomial equations.
The method is heuristic, however the attack works very well in practice.

It is well known that small prime difference makes RSA insecure. For example,
in 2002, Weger showed in [13] if |p− q| = Δ is small, RSA system with small ex-
ponent is much more vulnerable. So some standards require a certain condition
on the difference of the primes. For example, ANSI X9.13 requires that the two
primes differ in the first 100 bits. But in this paper we show that only requiring
the primes to have large difference (e.g. the Most-Significant bits of the primes
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(Grant 60673081) and ”863” project of China (Grant 2006AA01Z417).

J. Garay et al. (Eds.): ISC 2007, LNCS 4779, pp. 221–229, 2007.
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are not equal) will not ensure the security of RSA with small private-exponent. If
the primes share their Least-Significant bits (For example, the system proposed
in [10]-[11], but the private-exponent used in this system is not small), RSA sys-
tem with small private-exponent is much more vulnerable to the Boneh-Durfee
Attack. Let N = p · q denote an RSA modulus of length n bits, with p and q
primes each of length about n/2 bits. Suppose |p − q| = r · 2(1/2−α)·n, and the
public-exponent e in the RSA system is a γ · n-bit odd positive integer. Let the
private-exponent d be a β · n-bit positive integer. Our result is if

β < (α+ 13/2− (4α2 + 4α+ 24αγ + 12γ + 1)1/2)/6,

one may disclose the private-exponent d in polynomial time. For example, when p
and q share their 0.24n Least-Significant bits RSA will be insecure if d < N0.371.

The attack is similar to [5]. We modify the lattice which will be used to
solve the prime factors of the RSA modulus N . And the attack is also heuristic,
however the attack works very well in practice. If the length of r is much less
than αn, that means p and q share their Most-Significant bits, our result is much
worse than the result in [13]. However, using the method in [13], one can not
get results better than the result in this paper when the length of r is very close
to αn. So our result also shows that choosing an RSA modulus with its prime
factors sharing some bits yields improvements on the small private-exponent
attack of Boneh-Durfee.

The paper is organized as follows. Some preliminary facts in lattice theory and
the basic steps of the attack are given in Section 2; In Section 3, we present the
attack on the RSA system with primes sharing least significant bits and small
private-exponent. The conclusion and some problems are proposed in Section 4.

2 Some Facts of Lattice and Lattice Attack

Let L be a lattice spanned by linearly independent vectors u1,u2, . . . ,uw, where

u1,u2, . . . ,uw ∈ Zn and w ≤ n. That is, L = {
w∑

i=1

kiui|ki ∈ Z}. We say that the

set {u1,u2, . . . ,uw} is a basis for L, and w is the dimension of L. We denote
the vectors by u∗

1,u
∗
2, . . . ,u

∗
w which are obtained by applying the Gram-Schmidt

process to the vectors u1,u2, . . . ,uw. Then the determinant of L is defined as

det(L) =
w∏

i=1

||u∗
i ||,

where || a || denotes the Euclidean norm of the vector a = (a0, a1, . . . , an−1),
that is,

|| a || = (
n−1∑
i=0

a2i )
1/2.

If w = n, the lattice is called a full rank lattice. A full rank lattice has the
property that

det(L) = |det(u1,u2, . . . ,uw)|,
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where |det(u1,u2, . . . ,uw)| is the absolute value of the determinant of the n×n
matrix whose rows are the basis vectors u1,u2, . . . ,uw.

It is well known that given a basis for a lattice, LLL algorithm can provide
an approximately shortest vector in the lattice [8].

Lemma 1 ([8]). Let linearly independent vectors u1,u2, . . . ,uw be the inputs
of LLL algorithm, and b1,b2, . . . ,bw the output vectors. Then b1,b2, . . . ,bw

satisfy
1) ||b∗

i ||2 < 2||b∗
i+1||2,

2) for i = 1, . . . , w, if bi = b∗
i +

i−1∑
j=1

μi,jb∗
j , then | μi,j | < 1/2.

Remark 1. If the lattice L is spanned by u1,u2, . . . ,uw, then the set of vectors
b1, b2, . . . , bw is called an LLL-reduced basis of L.

Lemma 2 ([1]). Let L be a lattice, b1,b2, . . . ,bw an LLL-reduced basis of L.
Then

||b1|| ≤ 2w/2det(L)1/w,

||b2|| ≤ 2w/2det(L)1/(w−1).

In 1996, Don Coppersmith found the method based on LLL algorithm to solve
the small roots of small-degree modular equations [2]-[4]. This method was sim-
plified by Howgrave-Graham [6]. The simplified method is based on the following
lemma.

Let h(x, y, z) =
∑

i,j,k

ai,j,kx
iyjzk be a trivariate polynomial. Then the norm of

this polynomial is defined as

||h(x, y, z)|| = (
∑
i,j,k

a2i,j,k)1/2.

Lemma 3 ([6]). Let h(x, y, z) =
∑

i,j,k

ai,j,kx
iyjzk be a trivariate polynomial,

ai,j,k ∈ Z, which is a sum of w monomials. If
1) h(x0, y0, z0) ≡ 0 mod N , where x0 < X, y0 < Y , z0 < Z, X,Y, Z,N ∈ Z,
2) ||h(xX, yY, zZ)|| < N/(w1/2),

then h(x0, y0, z0) = 0.

Lemma 3 tells us that if the modular polynomial equation has small roots and
the condition (2) can be satisfied, then the problem to find these roots can be
convert to the problem to solve the polynomial equation over rational number
field.

Suppose f(x0, y0, z0) = 0 mod e, and g(y0, z0) = 0 for some small integers
x0, y0, z0 ∈ Z, and f(x, y, z), g(y, z) are two polynomials over Z. Construct the
set of polynomials

hu1,u2,u3,v(x, y, z) = em−vxu1yu2zu3fv(x, y, z),
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for u1, u2, u3, v,m, u1 ∈ I1, u2 ∈ I2, u3 ∈ I3, v ∈ I where I1, I2, I3, I are
the sets of some positive integers. It is obvious that hu1,u2,u3,v(x0, y0, z0) =
0 mod em. Then the linear combination h(x, y, z) of these polynomials has
h(x0, y0, z0) = 0 mod em. If h(x, y, z) satisfies the second condition of Lemma
3, that is ||h(xX, yY, zZ)|| < em/(w1/2), where X,Y, Z are the upper bound of
x0, y0, z0 and w is the number of the monomials in h(x, y, z), then h(x0, y0, z0) =
0 from Lemma 3. If we have many polynomials satisfying Lemma 3, then we may
get the root (x0, y0, z0) by the resultant of these polynomials.

Using LLL algorithm, the polynomials with low norm may be found. We may
construct a lattice L spanned by the corresponding coefficients of the sets of
polynomials hu1,u2,u3,v(xX, yY, zZ). Let r be the dimension of the lattice L.
Then the polynomials corresponding to the first vector and the second vector of
the output of LLL algorithm satisfy:

||h1(xX, yY, zZ)|| < 2r/2det(L)1/r;

||h2(xX, yY, zZ)|| < 2r/2det(L)1/(r−1).

If 2r/2det(L)1/(r−1) < em/(r1/2), we have h1(x0, y0, z0) = h2(x0, y0, z0) = 0
from Lemma 3. The factor 2r/2 could be negligible since it is too small compared
to em. So in order to make the conditions in Lemma 3 satisfied, we only need

det(L) < em(r−1).

If the above inequation is satisfied, we may have h1(x0, y0, z0) = 0 and
h2(x0, y0, z0) = 0. Let g′(y, z) = Resx(h1, h2) be the resultant of the polyno-
mials h1(x, y, z) and h2(x, y, z). If g′(y, z) �= 0, then Resz(g′, g) may disclose the
root y0.

In the above discussion, we suppose the resultant of the polynomials is not
equal to 0. So we always have the following assumption.

Assumption 1. The resultant computations for the polynomials in this paper
yield non-zero polynomials.

3 The Attack

Let N = p · q be an n-bit positive integer, where p, q are two n/2-bit primes
which share their (1/2− α)n least significant bits. Suppose the public-exponent
e in the RSA system is a γ ·n-bit odd positive integer, and the private-exponent
d is a β · n-bit positive integer. Then from the relationship between e and d,
there exists a positive integer k satisfying

ed = k(N + 1− (p+ q)) + 1.

Assume p − q = r2(1/2−α)n, where r is an αn-bit positive integer. Then we
have

ed = k(N + 1− (r2(1/2−α)n + 2q)) + 1.



Small Private-Exponent Attack on RSA with Primes Sharing Bits 225

Let A = N + 1, a = 2(1/2−α)n, then (k, q, r) is a root for the modular polyno-
mial

f(x, y, z) = x(A− 2y − az) + 1 mod e.

So if we can solve the equation

f(x0, y0, z0) = 0 mod e,

then we may disclose the private key d, where |x0| < X, |y0| < Y, |z0| < Z and

X ∼= ed/N ∼= Nγ+β−1, Y ∼= N1/2, Z ∼= Nα.

Construct the set of polynomials as

gk,i,b(x, y, z)=em−kxiybfk(x, y, z), k=0; . . . , (m−1), i = 1, . . . , (m−k); b = 0, 1;

h′k,j(x, y, z) = em−k(az)jfk(x, y, z), k = 0, . . . ,m; j = 0, . . . , t;

h′′k,j(x, y, z) = em−kyjfk(x, y, z), k = 0, . . . ,m; j = 1, . . . , t;

where m and t are two parameters.

Remark 2. Since y2 + ayz = N , any term such as xiyjzk could be replaced by
the linear function on xiyj and xizk. So in the lattice we constructe, the term
xiyjzk does not exist.

Let L denote the lattice spanned by the coefficient vectors of the polynomials
gk,i,b(xX, yY, zZ), h′k,j(xX, yY, zZ), h′′k,j(xX, yY, zZ). Using LLL algorithm, we
may get two vectors h1, h2, and h1(x0, y0, z0), h2(x0, y0, z0) denote the corre-
sponding polynomials. Then

h1(x0, y0, z0) = 0 mod em;h2(x0, y0, z0) = 0 mod em,

where x0 = k, y0 = q, z0 = r. If these two polynomials satisfy the second condi-
tion in Lemma 3, then h1(x0, y0, z0) = 0 and h2(x0, y0, z0) = 0. Since az = N/y−
y, We may have two polynomials H1(x, y), H2(x, y) with H1(x0, y0) = 0 and
H2(x0, y0) = 0, where (x0, y0) = (k, q). From the resultant h(y)= Resx(H1, H2) ,
we may get y0, that is we may have the factor of the modulus N .

The problem now is when the polynomials the LLL algorithm outputs sat-
isfy the second condition in Lemma 3. From the discussion above, we have the
condition in Lemma 3 will be satisfied if the following inequation holds,

det(L) < em(w−1), (1)

where w is the dimension of the lattice L.
From the construction of the lattice L, we have

det(L) = (ex)numxY numyZnumz

= N (2γ+β−1)numx+1/2numy+αnumz ,
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where
numx = 1/6m(m + 1)(4m + 3t + 5) + 1/2m(m + 1)t;

numy = 1/6m(m + 1)(m + 2) + t/2 + mt + m2t/2 + t2/2 + mt2/2;
numz = 1/6(m3 − m) + 1/2t(1 + m) + 1/2tm(m + 1) + 1/2m(m + 1) + 1/2t2(m + 1).

Then Inequation (1) will be satisfied when

(2γ + β − 1)numx + 1/2numy + αnumz < γm((m+ 1)(m+ 2t+ 1)− 1)

from w = (m+ 1)(m+ 2t+ 1).
Suppose t = τm, then

numx = (4 + 6τ)/6m3 +O(m3);
numy = 1/6(1 + 3τ + 3τ2)m3 +O(m3);
numz = 1/6(1 + 3τ + 3τ2)m3 +O(m3).

So Inequation (1) is true if and only if

(2γ + β − 1)((4 + 6τ)/6m3 +O(m3)) + 1/2(1/6(1 + 3τ + 3τ2)m3 +O(m3))
+α(1/6(1 + 3τ + 3τ2)m3 +O(m3)) < γ((1 + 2τ)m3 +O(m3)).

Suppoes m is large enough, then the inequation above will be true if

(4γ + 8β + 2α− 7) + (12β + 6α− 9)τ + (6α+ 3)τ2 < 0.

The left side of the inequation above has its least value in

τ = −(6α+ 12β − 9)/(6 + 12α).

From easy computation, we have the Inequation (1) will be true if

β < (α+ 13/2− (4α2 + 4α+ 24αγ + 12γ + 1)1/2)/6,

We describe the relationship between the bound of β and the parameters α,
γ by two charts and two tables. Chart 1 describes the bound of β when γ = 1;
Chart 2 describes the bound of β when γ = 0.55. In Table 2, the data in the
first row are the value of γ, and the data in the first column are the value of α.
The data in the other positions are the value of the upper bound of β when γ
and α are evaluated with the corresponding values.
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Table 2. The attack results when p and q share their least significant bits

1.0 0.9 0.86 0.8 0.7 0.6 0.55

0.5 0.284 0.323 0.339 0.363 0.406 0.451 0.475
0.4 0.319 0.356 0.371 0.395 0.435 0.479 0.501
0.3 0.335 0.390 0.405 0.427 0.466 0.507 0.529
0.25 0.375 0.409 0.423 0.444 0.482 0.522 0.544

In this matrix, the entries in the first row correspond the terms appeared in
the polynomials. And the entries in the first column is the polynomials used to
construct the lattice. The symbol “-” means the coefficient of the corresponding
term is not 0. The terms in the diagonal are the coefficients of the corresponding
terms. And the other blanks in this matrix are 0. It is obvious that the matrix
is lower triangular.

We performed several experiments to test the validity of Assumption 1. We
implemented the new attacks on a 3.0GHz Pentium running Microsoft. The
LLL lattice reduction was done using Mathematica 5.1. All the experiments can
disclose the factors of the public modulus N .

4 Conclusion and Open Problems

In this paper, we show that if the primes share their some bits (e.g. Least-
Significant bits), RSA system with small private-exponent is much more vulner-
able to the Boneh-Durfee Attack. The result shows that we should be careful
when we choose the primes. It is obvious that when α = 0.5 and γ = 1, the
upper bound of the private-exponent in our attack scheme d is N0.284 which is
lower than the result in [1]. How to modify the attack scheme to get the best
bound is an open problem.
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Abstract. NLS is a stream cipher which was submitted to the
eSTREAM project. A linear distinguishing attack against NLS was pre-
sented by Cho and Pieprzyk, which was called Crossword Puzzle (CP)
attack. NLSv2 is a tweak version of NLS which aims mainly at avoiding
the CP attack. In this paper, a new distinguishing attack against NLSv2
is presented. The attack exploits high correlation amongst neighboring
bits of the cipher. The paper first shows that the modular addition pre-
serves pairwise correlations as demonstrated by existence of linear ap-
proximations with large biases. Next, it shows how to combine these
results with the existence of high correlation between bits 29 and 30 of
the S-box to obtain a distinguisher whose bias is around 2−37. Conse-
quently, we claim that NLSv2 is distinguishable from a random cipher
after observing around 274 keystream words.

Keywords: Distinguishing Attacks, Crossword Puzzle Attack, Stream
Ciphers, eSTREAM, NLS, NLSv2.

1 Introduction

In 2004, ECRYPT project launched a new multi-year project eSTREAM, the
ECRYPT Stream Cipher project, to identify new stream ciphers that might
become suitable for widespread adoption as international industry standards
[8]. NLS is one of stream ciphers submitted to the eSTREAM project [4]. The
second phase of the eSTREAM included NLS in both profiles 1 (Software) and
2 (Hardware). During the first phase, a distinguishing attack against NLS was
presented in [3]. The attack requires around 260 keystream observations.

NLSv2 is a tweaked version of NLS to counter the distinguishing attack men-
tioned above. Unlike in the original NLS, NLSv2 periodically updates the value
Konst every 65537 clock. The new value of Konst is taken from the output of
the non-linear filter. In [3], the linear approximation from non-linear feedback
shift register (NFSR) was derived and the sign of bias can be either positive or
negative depending on the value of Konst. Thus, a randomly updated Konst
is expected to “neutralize” the overall bias of approximations, which eventually
minimizes the bias of distinguisher.

J. Garay et al. (Eds.): ISC 2007, LNCS 4779, pp. 230–248, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In [2], the authors presented distinguishing attacks on NLS and NLSv2 by
Crossword Puzzle attack (or shortly CP attack) method. The CP attack is a
variant of the linear distinguishing attack which was specifically designed to
work for NFSR based stream ciphers. The attack concentrates on finding ap-
proximations and combining them in such a way that the internal states of
NFSR cancel each other.

Being more specific, the authors showed that, for the attack on NLSv2, the
effect of Konst could be eliminated by using ’even’ number of NFSR approxima-
tions. A distinguisher was constructed by combining eight NFSR approximations
and two NLF approximations, for which 296 observations of keystream are re-
quired. However, due to the explicit upper limit of 280 on the number of observed
keystream imposed by the designers of the cipher, this attack does not break the
cipher.

In this paper, we have improved the linear distinguishing attack on NLSv2
presented in the latter part of [2]. We still use the CP attack from [2] for our
distinguisher. However, we have observed that there are linear approximations
of S-boxes whose biases are much higher than those used in the previous attack.
Using those more effective approximations, we can now construct a distinguisher
whose bias is around 2−37. Therefore, we claim that NLSv2 is distinguishable
from a truly random cipher after observing around 274 keystream words which
are within the limit of permitted observations during the session with a single
key.

This paper is organized as follows. Section 2 presents some properties of mul-
tiple modular additions which are useful for our attack. Section 3 presents the
structure of NLSv2. Section 4 presents the technique we use to construct linear
approximations required in our attack. Section 5 contains the main part of the
paper and presents the CP attack against NLSv2. Section 6 concludes the work.

Notation

1. + denotes the addition modulo 232,
2. x≪k represents the 32-bit x which is rotated left by k-bit,
3. x(i) stands for i-th bit of the 32-bit string x

These notations will be used throughout this paper.

2 Probabilistic Properties of Multiple Modular Additions

The attack on NLSv2 explores a correlation between two neighboring bits. This
section describes the behavior of neighboring bits in modular additions and es-
tablishes the background for our study. Suppose that z = x + y where x, y ∈
{0, 1}32 are uniformly distributed random variables. According to [1], each z(i)
bit is expressed a function of x(i), · · · , x(0) and y(i), · · · , y(0) bits as follows

z(i) = x(i) ⊕ y(i) ⊕ x(i−1)y(i−1) ⊕
i−2∑
j=0

x(j)y(j)

i−1∏
k=j+1

[x(k) ⊕ y(k)], for i = 1, . . . , 31

and z(0) = x(0)⊕y(0). Let R(x, y) denote the carry of modular addition as follows



232 J.Y. Cho and J. Pieprzyk

R(x, y)(i) = x(i)y(i) ⊕
i−1∑
j=0

x(j)y(j)

i∏
k=j+1

[x(k) ⊕ y(k)], i = 0, 1, . . . , 30. (1)

Then, obviously, z(i) = x(i)⊕y(i)⊕R(x, y)(i−1) for i = 1, . . . , 31. Due to Equation
(1), the carry R(x, y)(i) has the following recursive relation.

R(x, y)(i) = x(i)y(i) ⊕ (x(i) ⊕ y(i))R(x, y)(i−1) (2)

Hereafter, we study the biases of approximations using a pair of adjacent bits
when multiple modular additions are used. For this, we introduce the following
definition.

Definition 1. Γi denotes a linear masking vector over GF (2) which has ’1’ only
on the bit positions of i and i + 1. Then, given 32-bit x, Γi · x = x(i) ⊕ x(i+1),
where · denote the standard inner product.

Now we are ready to present a collection of properties that are formulated in
the lemmas given below. These results are essential for setting up our attack.
In the following, we assume that all inputs of modular addition are uniformly
distributed random variables.

Lemma 1. Given x, y ∈ {0, 1}32, the probability distribution of the carry bits
can be expressed as follows

Pr[R(x, y)(i) = 0] =
1
2

+ 2−i−2 for i = 0, . . . , 30.

Proof. The proof is given by induction.

(1) Let i = 0. Then Pr[R(x, y)(0) = x(0)y(0) = 0] = 3
4 = 1

2 + 2−2

(2) In the induction step we assume that Pr[R(x, y)(i−1) = 0] = 1
2 + 2−i−1.

Then, from Relation (2), we have

Pr[R(x, y)(i)=0]=
{
Pr[x(i)y(i) = 0] = 3

4 , if R(x, y)(i−1) = 0
Pr[x(i)y(i) ⊕ (x(i) ⊕ y(i)) = 0] = 1

4 , if R(x, y)(i−1) = 1

Hence, the following equation holds

Pr[R(x, y)(i)=0]=
3
4
·Pr[R(x, y)(i−1)=0]+

1
4
·Pr[R(x, y)(i) = 1] =

1
2
+2−i−2.

This proves our lemma. ��

Corollary 1. Given x, y ∈ {0, 1}32, the following approximation holds with the
constant probability

Pr[Γi ·R(x, y) = 0] =
3
4

for i = 0, . . . , 30.
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Proof. By definition, we obtain

Γi·R(x, y)=R(x, y)(i)⊕R(x, y)(i+1) = x(i+1)y(i+1)⊕(x(i+1)⊕y(i+1)⊕1)R(x, y)(i).

Hence, from Lemma 1, we get

Pr[Γi · R(x, y) = 0] =
3
4
· Pr[R(x, y)(i) = 0] +

3
4
· Pr[R(x, y)(i) = 1] =

3
4

and the corollary holds. ��

Due to Corollary 1, the following approximation has the probability of 3
4 , as

stated in [2],
Γi · (x + y) = Γi · (x⊕ y), i = 0, . . . , 30 (3)

Lemma 2. Suppose that x, y, z ∈ {0, 1}32. Then, the following linear approxi-
mation

Γi · (x + y + z) = Γi · (x⊕ y ⊕ z) (4)

holds with the probability of 2
3 −

1
32−2i−1 for i = 0, . . . , 30.

Proof. The proof of the lemma can be found in Appendix A.

It is interesting to see that the probability of Approximation (4) is around 2
3 =

1
2 (1 + 2−1.58) due to the dependency between the two modular additions. In
contrast to Lemma 2, the approximation Γi · [(x + y)⊕ (z + w)] = Γi · [(x⊕ y)⊕
(z ⊕ w)] holds with the bias of (2−1)2 by Piling-Up Lemma [6] since the two
modular additions are mutually independent. A similar observation that linear
approximations over two consecutive modular additions are not independent was
exploited to construct an improved distinguisher for SNOW 2.0 in [9]. We note
that Approximation (3) and Lemma 2 can be also derived by more generalized
algorithm on the linear approximations of modular addition with any inputs
given in [9].

Lemma 3. Suppose that x1, x2, . . . , xn ∈ {0, 1}32 and k ∈ {0, 1}32 where n is
an even number. Then, the following linear approximation

Γi · (x1 + k)⊕ Γi · (x2 + k)⊕ · · · ⊕ Γi · (xn + k) = Γi · (x1 ⊕ x2 ⊕ · · · ⊕ xn)

holds with the probability of around n+2
2(n+1) for i = 1, . . . , 30.

Proof. The lemma is proved in Appendix B.

Corollary 2. Given x, y, z ∈ {0, 1}32, the following linear approximation

Γi · (x + y)⊕ Γi · (x + z) = Γi · (y ⊕ z)

holds with the probability of 2
3 + 1

32−2i−2 for i = 0, . . . , 30.

Proof. Appendix C contains the proof of the Corollary.
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Lemma 4. Given x, y, z, w ∈ {0, 1}32, the following linear approximation

Γi · (x + y)⊕ Γi · (z + w) = Γi · (x + z)⊕ Γi · (y + w)

has the probability of 2
3 + 1

32−2i−2 for i = 0, . . . , 30.

Proof. For the proof, see Appendix D.

Corollary 3. Let x, y, z, w ∈ {0, 1}32, then the following linear approximation

Γi · (x + y)⊕ Γi · (x + z)⊕ Γi · (y + w) = Γi · (z ⊕ w)

holds with the probability of 29
48 + 1

32−2i−4 for i = 0, . . . , 30.

Proof. For the proof, see Appendix E.

For convenience, in the rest of the paper we are going to use a bias of approxi-
mation rather than the probability that an approximation holds.

3 Brief Description of NLSv2

NLS is a synchronous, word-oriented stream cipher controlled by a secret key
of the size up to 128 bits. The keystream generator of NLS is composed of a
non-linear feedback shift register (NFSR) and a non-linear filter (NLF) with a
counter. In this section, we describe only the part of NLS which is necessary to
understand our attack. The structure of NLSv2 is exactly the same as that of
NLS except a periodically updated Konst [4]. For more details, we refer to the
paper [5].

3.1 Non-linear Feedback Shift Register (NFSR)

At time t, the state of NFSR is denoted by σt = (rt[0], . . . , rt[16]) where rt[i]
is a 32-bit word. Konst is a key-dependent 32-bit word, which is set at the
initialization stage and is updated periodically. The transition from the state σt

to the state σt+1 is defined as follows:

(1) rt+1[i] = rt[i+ 1] for i = 0, . . . , 15;
(2) rt+1[16] = f((rt[0]≪19) + (rt[15]≪9) + Konst)⊕ rt[4];
(3) if t ≡ 0 (modulo f16), then

(a) rt+1[2] is modified by adding t (modulo 232),
(b) Konst is changed to the output of NLF,
(c) the output of NLF at t = 0 is not used as a keystream word,
where f16 is a constant integer 216 + 1 = 65537.
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ω(H) : most significant byte of ω

α(H) : most significant byte of α

α(L) : first 24 bits of α

Fig. 1. The update function of NFSR

The f function. The function f is defined as f(ω) = S-box(ω(H)) ⊕ ω where
ω(H) is the most significant 8 bits of 32-bit word ω. The main S-box is com-
posed of two independent smaller S-boxes: the Skipjack S-box (with 8-bit input
and 8-bit output) [7] and a custom-designed QUT S-box (with 8-bit input and
24-bit output). The output of main S-box in NLSv2 is defined as a concate-
nation of outputs of the two smaller S-boxes. Note that the input of Skipjack
S-box (that is ω(H)) is added to the output of Skipjack S-box in advance for fast
implementation. Since the output of the main S-box is added to ω again, the
original output of Skipjack S-box is restored. See Figure 1 for details.

3.2 Non-linear Filter (NLF)

Each output keystream word νt of NLF is generated according to the following
equation

νt = NLF (σt) = (rt[0] + rt[16])⊕ (rt[1] + rt[13])⊕ (rt[6] + Konst). (5)

Note that there is no output word when t = 0 modulo f16.

4 Building Linear Approximations

In this section, linear approximations for NLF and NFSR are developed for the
CP attack against NLSv2. Our main goal here is to derive new approximations
of NFSR that have a higher bias than those presented in [2]. Let n is a positive
number. Given a linear approximation l : {0, 1}2n → {0, 1}, a bias ε of the
approximation l is defined as follows1

1 ε is also known in the literature as the correlation or the imbalance.
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Pr[l = 0] =
1
2
(1 + ε), |ε| > 0.

The advantage of the definition is that the bias of the combination of n indepen-
dent approximations each of bias ε is equal to εn as asserted by the Piling-up
lemma [6].

4.1 Linear Approximations of NFSR

We investigate the bias of the approximation that is a linear combination of two
neighboring bits of α = S-box(ω(H)). As ω(H) is an 8-bit input, the bias εi can
be calculated as follows

εi = 2−8 · {#(Γi · α = 0)−#(Γi · α = 1)}, i = 0, . . . , 30.

By the exhaustive search, we have found that the linear approximation α29 ⊕
α30 = 1 has the largest bias of 2−2.3. Since f(ω) = S-box(ω(H)) ⊕ ω, it is clear
that the following output approximation has the bias of 2−2.3.

Γ29 · (ω ⊕ f(ω)) = 1 (6)

From the structure of the update function of NFSR, we know that the follow-
ing relation is always true.

Γ29 · (f(ω)t ⊕ rt[4]⊕ rt+1[16]) = 0

By combining the above relation with Approximation (6), we obtain the approx-
imation

Γ29 · (ωt ⊕ rt[4]⊕ rt+1[16]) = 1 (7)

that has the bias of 2−2.3.

4.2 Linear Approximations of NLF

The best linear approximation of NLF for our attack is similar to the one which
was given in [2] except that we use the bit position 29 and 30 instead of 12, 13, 22
and 23. The bias of the approximation is given by the following lemma.

Lemma 5. Given two consecutive outputs of NLF, namely νt and νt+1, the
following approximation

Γi · (νt⊕νt+1) = Γi · (rt[0]⊕ rt[2]⊕ rt[6]⊕ rt[7]⊕ rt[13]⊕ rt[14]⊕ rt[16]⊕ rt+1[16])

holds with the bias of 1
36 (1 + 2−2i−1)2.

Proof. From Equation (5), we know that

νt ⊕ νt+1 = (rt[0] + rt[16])⊕ (rt[1] + rt[13])⊕ (rt[6] + Konst)
⊕ (rt+1[0] + rt+1[16])⊕ (rt+1[1] + rt+1[13])⊕ (rt+1[6] + Konst)
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for two consecutive clocks (t, t + 1). Note that rt[1] and Konst are used twice
in above expression. Hence, according to Corollary 2, the following two approx-
imations have the probability of 1

2 (1 + 1
3 + 1

32−2i−1) each.

Γi · (rt[6] + Konst)⊕ Γi · (rt+1[6] + Konst) = Γi · (rt[6]⊕ rt+1[6])
Γi · (rt[1] + rt[13])⊕ Γi · (rt+1[0] + rt+1[16]) = Γi · (rt[13]⊕ rt+1[16])

In addition, due to Corollary 1, the approximation given below holds with the
probability of 1

2 (1 + 2−1), respectively.

Γi · (rt[0] + rt[16]) = Γi · (rt[0]⊕ rt[16])
Γi · (rt+1[1] + rt+1[13]) = Γi · (rt+1[1]⊕ rt+1[13])

Hence, the overall bias is (13 + 1
32−2i−1)2 × 2−2 = 1

36 (1 + 2−2i−1)2. ��

Therefore, the best linear approximation of NLF for our attack is

Γ29 ·(νt⊕νt+1) = Γ29 ·(rt[0]⊕rt[2]⊕rt[6]⊕rt[7]⊕rt[13]⊕rt[14]⊕rt[16]⊕rt+1[16]
(8)

that has the bias of 1
36 (1 + 2−2×29−1)2 ≈ 2−5.2.

Linear property of NFSR. Due to the update rule of NFSR, we know that
rt+i[j] = rt+j [i] where i, j > 0.

5 Crossword Puzzle (CP) Attack on NLSv2

In NLSv2, the value of Konst is updated by taking the output of NLF at every
65537 clock. In [2], authors showed that Konst terms could be removed from
the distinguisher by combining two consecutive approximations of NLF. In this
section, the similar technique is adapted for our attack. That is, the distinguisher
are derived by combining the approximations of NFSR and NLF in such a way
that the internal states of the shift register are canceled out.

However, we develop more efficient attack on NLSv2 using Approximation (7)
and (8) at clock positions η which are

η = {0, 2, 6, 7, 13, 14, 16, 17}.

Note that Approximation (7) consists of non-linear terms and linear terms: Γ29 ·
ωt and Γ29 · (rt[4]⊕ rt+1[16]), respectively. In the following section, we develop
the approximations of the Xt and Yt separately which are defined as follows:

Xt =
⊕
k∈η

Γ29 · (rt+k[4]⊕ rt+k+1[16]), Yt =
⊕
k∈η

Γ29 · ωt+k.
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5.1 Bias of Xt

Due to Approximation (8), the Xt can be represented in the following form:

Xt =
⊕
k∈η

Γ29 · (rt+k[4]⊕ rt+k+1[16]) =
⊕
k∈η

Γ29 · (rt+4[k]⊕ rt+17[k])

= Γ29 · (νt+4 ⊕ νt+5 ⊕ νt+17 ⊕ νt+18). (9)

The bias of Approximation (9) is 2−8.6. The calculations of the bias are given
below. Due to the definition of νt given in Equation (5), we know that

Γ29 · (νt+4 ⊕ νt+5 ⊕ νt+17 ⊕ νt+18)

= Γ29 · (rt+4[0] + rt+4[16]) ⊕ Γ29 · (rt+4[1] + rt+4[13]) ⊕ Γ29 · (rt+4[6] + Konst)

⊕Γ29 ·(rt+5[0] + rt+5[16]) ⊕ Γ29 · (rt+5[1] + rt+5[13]) ⊕ Γ29 ·(rt+5[6] + Konst)

⊕Γ29 ·(rt+17[0] + rt+17[16]) ⊕ Γ29 ·(rt+17[1] + rt+17[13]) ⊕ Γ29 · (rt+17[6] + Konst)

⊕Γ29 ·(rt+18[0] + rt+18[16]) ⊕ Γ29 · (rt+18[1] + rt+18[13]) ⊕ Γ29 · (rt+18[6] + Konst)

We can see that several terms are shared due to the linear property of NFSR.
Hence, the approximations are applied separately into four groups as follows.

1. According to Corollary 3, we get

Γ29 ·(rt+4[1] + rt+4[13]) ⊕ Γ29 ·(rt+17[0] + rt+17[16]) ⊕ Γ29 ·(rt+5[0] + rt+5[16])

= Γ29 · rt+17[16] ⊕ Γ29 · rt+5[16]

that holds with the probability of 29
48 + 1

32−2×29−4 ≈ 1
2 (1 + 2−2.3).

2. Due to Lemma 3, the approximation

Γ29 ·(rt+5[1] + rt+5[13])⊕Γ29 ·(rt+18[0] + rt+18[16])⊕Γ29 ·(rt+17[1] + rt+17[13])

= Γ29 · (rt+5[1] ⊕ rt+5[13] ⊕ rt+18[16] ⊕ rt+17[13])

holds with the probability of around 5
8 = 1

2 (1 + 2−2).
3. Lemma 3 also asserts that the approximation

Γ29 · (rt+4[6] + Konst) ⊕ Γ29 · (rt+5[6] + Konst) ⊕ Γ29 · (rt+17[6] + Konst)

⊕Γ29 · (rt+18[6] + Konst) = Γ29 · (rt+4[6] ⊕ rt+5[6] ⊕ rt+17[6] ⊕ rt+18[6])

holds with the probability of around 3
5 = 1

2 (1 + 2−2.3).
4. Corollary 1 says that the approximation

Γ29 · (rt+4[0] + rt+4[16])⊕ Γ29 · (rt+18[1] + rt+18[13])
= Γ29 · (rt+4[0]⊕ rt+4[16])⊕ Γ29 · (rt+18[1]⊕ rt+18[13])

holds with the probability of 1
2 (1 + 2−2).

Therefore, the bias of Approximation (9) is 2−2.3 × 2−2 × 2−2.3 × 2−2 = 2−8.6.
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5.2 Bias of Yt

The ωt is an intermediate variable that is defined as ωt =(rt[0]≪19) + (rt[15]≪9)
+ Konst. Due to Lemma 2, the ωt has the following approximation

Γ29 · ω = Γ29 · (rt[0]≪19 ⊕ rt[15]≪9 ⊕Konst)
= Γ10 · rt[0]⊕ Γ20 · rt[15]⊕ Γ29 ·Konst

that holds with the probability of 2
3 −

1
32−2×29−1 ≈ 1

2 (1+2−1.6). Due to Lemma
5, the approximation of Yt can be described as

Yt =
⊕
k∈η

Γ29 · ωt+k =
⊕
k∈η

(Γ10 · rt+k[0]⊕ Γ20 · rt+k[15]⊕ Γ29 ·Konst)

= Γ10 · (νt ⊕ νt+1)⊕ Γ20 · (νt+15 ⊕ νt+16). (10)

If Lemma 2 and Lemma 5 are independently applied to the Approximation (10),
the bias is expected to be 2−1.6∗8−5.2 = 2−18.0. However, due to the dependencies
of approximations, the bias of Approximation (10) is surprisingly around 2−10.4.
The detail analysis on the bias will be discussed in Section 5.4.

We note that Konst terms have disappeared since the binary addition of eight
approximations cancels Konst as observed in [2]. Due to the lack of a keystream
word at every f16-th clock, we can see precisely when Konst is updated. Since
the updated Konst has been effective to all states of registers after the first 17
clocks, the observations generated from the first 17 clocks should not be counted
for the bias. Hence, Konst is regarded as a constant in all approximations.2

5.3 Bias of the Distinguisher

From Approximation (7),⊕
k∈η

Γ29 · (ωt+k ⊕ rt+k[4]⊕ rt+1+k[16]) = Xt ⊕ Yt = 0 (11)

On the other hand, by adding up the approximations of (9) and (10), we obtain
the following approximation

Xt⊕Yt = Γ29 ·(νt+4⊕νt+5⊕νt+17⊕νt+18)⊕Γ10 ·(νt⊕νt+1)⊕Γ20 ·(νt+15⊕νt+16)
(12)

that holds with the bias equal to 2−8.6 × 2−10.4. Therefore, by combining (11)
and (12), the distinguisher on NLSv2 can be described by the approximation

Γ29 ·(νt+4⊕νt+5⊕νt+17⊕νt+18)⊕Γ10 ·(νt⊕νt+1)⊕Γ20 ·(νt+15⊕νt+16) = 0 (13)

that holds with the bias of around 2−2.3×8 × 2−8.6 × 2−10.4 = 2−37.4.

2 By this reason, the notation Konstt is not used in the approximations.
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5.4 The Bias of Approximation (10)

According to the definition of νt given by Equation (5), we can write the following
approximation

Γ10 · (νt ⊕ νt+1) ⊕ Γ20 · (νt+15 ⊕ νt+16)

= Γ10 · (rt[0] + rt[16]) ⊕ Γ10 · (rt[1] + rt[13])Γ10 · (rt[6] + Konst)

⊕Γ10 · (rt+1[0] + rt+1[16]) ⊕ Γ10 · (rt+1[1] + rt+1[13]) ⊕ Γ10 · (rt+1[6] + Konst)

⊕Γ20 · (rt+15[0] + rt+15[16]) ⊕ Γ20 · (rt+15[1] + rt+15[13]) ⊕ Γ20 · (rt+15[6] + Konst)

⊕Γ20 · (rt+16[0] + rt+16[16]) ⊕ Γ20 · (rt+16[1] + rt+16[13]) ⊕ Γ20 · (rt+16[6] + Konst)

� Δ1 ⊕ Δ2 ⊕ Δ3

where

Δ1 = Γ10 · (rt[0] + rt[16])⊕ Γ20 · (rt+15[0] + rt+15[16])
⊕Γ10 · (rt+1[1] + rt+1[13])⊕ Γ20 · (rt+16[1] + rt+16[13])

Δ2 = Γ10 · (rt[1] + rt[13])⊕ Γ20 · (rt+15[1] + rt+15[13])
⊕Γ10 · (rt+1[0] + rt+1[16])⊕ Γ20 · (rt+16[0] + rt+16[16])

Δ3 = Γ10 · (rt[6] + Konst)⊕ Γ20 · (rt+15[6] + Konst)
⊕Γ10 · (rt+1[6] + Konst)⊕ Γ20 · (rt+16[6] + Konst)

In order to determine the bias of Δ1, Δ2 and Δ3, the following two lemmas are
required.

Lemma 6. Given x, y, a, b, c, d, k ∈ {0, 1}32, the following approximation has
the bias of 2−3.1 when i > 0.

Γi · (x + a)⊕ Γi · (y + b)⊕ Γi · (x + c)⊕ Γi · (y + d)
= Γi · (a + b + k)⊕ Γi · (c + d + k)

Proof. For the proof, see Appendix F.

Lemma 7. Given x, y, z, w, a, b, c, d, k ∈ {0, 1}32, the following approximation
holds with the bias of 2−4.2 when i > 0.

Γi · (x + a)⊕ Γi · (y + b)⊕ Γi · (z + c)⊕ Γi · (w + d)
= Γi · (x + y + k)⊕ Γi · (a + b + k)⊕ Γi · (z + w + k)⊕ Γi · (c + d + k)(14)

Proof. See Appendix G for the proof.

Now we can derive the biases of the approximations Δ1, Δ2 and Δ3.

Δ1: From the definition of the rotations, we know that

Δ1 = Γ29 · (rt[0]≪19 + rt[16]≪19)⊕ Γ29 · (rt+15[0]≪9 + rt+15[16]≪9)

⊕Γ29 · (rt+1[1]≪19 + rt+1[13]≪19)⊕ Γ29 · (rt+16[1]≪9 + rt+16[13]≪9)
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Fig. 2. The biases of Approximation (9) and (10)

According to Lemma 7, the following approximation holds with the bias of 2−4.2.

Δ1 = Γ29 · (rt[0]
≪19 + rt+15[0]

≪9 + Konst)⊕ Γ29 · (rt[16]
≪19 + rt+15[16]

≪9 + Konst)

⊕Γ29 · (rt+1[1]
≪19 + rt+16[1]

≪9 + Konst) ⊕ Γ29 ·(rt+1[13]
≪19 + rt+16[13]

≪9 + Konst)

= Γ29 · (ωt ⊕ ωt+16 ⊕ ωt+2 ⊕ ωt+14)

Δ2 and Δ3: Due to Lemma 6, we can write the approximations

Δ2 = Γ29 · (rt[1]
≪19 + rt+15[1]

≪9)⊕ Γ29 · (rt[13]
≪19 + rt+15[13]

≪9)

⊕Γ29 · (rt+1[0]
≪19 + rt+16[0]

≪9
)⊕ Γ29 · (rt+1[16]

≪19 + rt+16[16]
≪9

)

= Γ29 · (rt[13]
≪19 + rt+15[13]

≪9 + Konst)⊕ Γ29 · (rt+1[16]
≪19 + rt+16[16]

≪9 + Konst)

= Γ29 · (ωt+13 ⊕ ωt+17)

Δ3 = Γ29 · (rt[6]
≪19 + rt+15[6]

≪9
)⊕ Γ29 · (Konst

≪19 + Konst
≪9

)

⊕Γ29 · (rt+1[6]
≪19 + rt+16[6]

≪9)⊕ Γ29 · (Konst≪19 + Konst≪9)

= Γ29 · (rt[6]
≪19 + rt+15[6]

≪9 + Konst)⊕ Γ29 · (rt+1[6]
≪19 + rt+16[6]

≪9 + Konst)

= Γ29 · (ωt+6 ⊕ ωt+7)

with the same bias of 2−3.1. Thus, Approximation (10) holds with the bias of
2−(4.2+3.1×2) = 2−10.4.

5.5 Experiments

The verification of the bias of Distinguisher (13) is not feasible due to the re-
quirement of large observations of keystream. Instead, our experiments have
been focused on verifying the biases of Approximation (9) and (10) indepen-
dently. Figure 2 verifies that the estimated biases of those approximations are
correct.
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6 Conclusion

In this paper, we present a Crossword Puzzle (CP) attack against NLSv2 that is
a tweaked version of NLS. Even though the designers of NLSv2 aimed to avoid
the distinguishing attack that was constructed for the NLS, we have shown that
the CP attack can be applied for NLSv2. The distinguisher has a bias higher
than 2−40 and consequently, the attack requires less than 280 observations which
was given as the security benchmark by the designers.
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Since Qi · Li = Ti by definition, the following relation between Xi and Yi holds

Yi = QiXi ⊕Qi.

We try to find out the Pr[Xi = 0]. We start from the equation Xi = Qi ⊕
LiXi−1 ⊕ Yi−1 and replace Yi−1 by Yi−1 = Qi−1Xi ⊕Qi−1, so we find

Xi = Qi ⊕ LiXi−1 ⊕ Yi−1 = Qi ⊕Qi−1 ⊕ (Li ⊕Qi−1)Xi−1. (15)

This gives us

Pr[Xi = 0] =
1
2
Pr[Xi−1 = 0] +

1
4
(1− Pr[Xi−1 = 0]) =

1
4

+
1
4
Pr[Xi−1 = 0]

Therefore, applying the recursion relation from Appendix H, we obtain

Pr[Xi = 0] =
1
3

+
1
3
2−2i−1. (16)

Note that Pr[X0 = 0] = Pr[x(0)y(0)⊕ y(0)z(0)⊕ z(0)x(0) = 0] = 1
2 . Hence, we can

write that

Γi−1 · (R(x, y)⊕R(x + y, z)) = Xi−1 ⊕Xi = Qi ⊕ (Li ⊕ 1)Xi−1 ⊕ Yi−1

= Qi ⊕Qi−1 ⊕ (Li ⊕Qi−1 ⊕ 1)Xi−1

Therefore,

Pr[Γi−1 ·(R(x, y)⊕R(x + y, z))=0]=
{
Pr[Qi ⊕Qi−1 = 0]= 1

2 , if Xi−1=0,
P r[Qi ⊕ Li ⊕ 1 = 0]= 3

4 , if Xi−1=1

By applying Equation (16), we get the final result

Pr[Γi−1 ·(R(x, y)⊕R(x + y, z))]=
1

2
Pr[Xi−1 =0]+

3

4
(1−Pr[Xi−1 =0])=

2

3
− 1

3
2−2i−1

B Proof of Lemma 3

Let us denote Φn,(i) = R(x1, k)(i) ⊕ R(x2, k)(i) ⊕ · · · ⊕ R(xn, k)(i). By Relation
(2), we know

Φn,(i) = k(i)(x1,(i) ⊕ x2,(i) ⊕ · · · ⊕ xn,(i))⊕ (x1,(i) ⊕ k(i))R(x1, k)(i−1) ⊕
(x2,(i) ⊕ k(i))R(x2, k)(i−1) ⊕ · · · ⊕ (xn,(i) ⊕ k(i))R(xn, k)(i−1)

Then, Φn,(i) has the following properties.

– If
⊕n

t=1 xt,(i) = 0, then there exists a pair of (x1,(i), x2,(i), . . . , xn,(i), k(i))
which generate the same Φn,(i).
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– If
⊕n

t=1 xt,(i) = 1, then there exists a pair of (x1,(i), x2,(i), . . . , xn,(i), k(i))
whose Φn,(i)s are complement each other.

Hence, by defining, Pr,(i) = Pr[
⊕r

t=1R(xt, k)(i) = 0], we get

Pn,(i) =
1

2n+1
[
n/2∑
r=0

(
n

2r

)
2P2r,(i−1) +

n/2−1∑
r=0

(
n

2r + 1

)
] =

1
4

+
1
2n

n/2∑
r=0

(
n

2r

)
P2r,(i−1)

where P0 = 1. Hence, Pn,(i) ≈ n+2
2(n+1) for i > 0.

By definition, we can write (x + k)(i) = x(i) ⊕ k(i) ⊕ R(x, k)(i−1). Thus, we
get

Γi · (x1 + k)⊕ Γi · (x2 + k)⊕ · · · ⊕ Γi · (xn + k)⊕ Γi · (x1 ⊕ x2 ⊕ · · · ⊕ xn)
= Γi−1 · (R(x1, k)⊕R(x2, k)⊕ · · · ⊕R(xn, k))
= Φn,(i−1) ⊕ Φn,(i)

= k(i)(x1,(i) ⊕ x2,(i) ⊕ · · · ⊕ xn,(i))⊕ (x1,(i) ⊕ k(i) ⊕ 1)R(x1, k)(i−1) ⊕
(x2,(i) ⊕ k(i) ⊕ 1)R(x2, k)(i−1) ⊕ · · · ⊕ (xn,(i) ⊕ k(i) ⊕ 1)R(xn, k)(i−1)

As before, we can get the following equation

Pr[Φn,(i−1) ⊕ Φn,(i) = 0] =
1
4

+
1
2n

n/2∑
r=0

(
n

2r

)
Pn−2r,(i−1)

=
1
4

+
1
2n

n/2∑
r=0

(
n

n− 2r

)
Pn−2r,(i−1) = Pn,(i)

For i > 0, we have Pr[Φn,(i−1)⊕Φn,(i) = 0] ≈ n+2
2(n+1) which concludes the proof.

C Proof of Corollary 2

From Definition (1), we write

R(x, y)(i)⊕R(x, z)(i)=x(i)y(i)⊕(x(i)⊕y(i))R(x, y)(i−1)⊕x(i)z(i)⊕(x(i)⊕z(i))R(x, z)(i−1).

Then, according to (x(i), y(i), z(i)), the expression R(x, y)(i) ⊕ R(x, z)(i) is split
into eight cases. Hence, we have the following recursive probability

Pr[R(x, y)(i) ⊕R(x, z)(i) = 0] =
1
2

+
1
4
Pr[R(x, y)(i−1) ⊕R(x, z)(i−1) = 0].

Using the recursion relation from Appendix H, we state that

Pr[R(x, y)(i) ⊕R(x, z)(i) = 0] =
2
3

+
1
3
2−2i−2
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Applying Relation (2), we can get

Γi · (x + y)⊕ Γi · (x + z)⊕ Γi · (y ⊕ z) = Γi−1 · (R(x, y)⊕R(x, z))
= x(i)y(i) ⊕ (x(i) ⊕ y(i) ⊕ 1)R(x, y)(i−1) ⊕ x(i)z(i) ⊕ (x(i) ⊕ z(i) ⊕ 1)R(x, z)(i−1)

Therefore, arguing in similar way as above, we establish that

Pr[Γi · (R(x, y)⊕R(x, z)) = 0] =
1
2

+
1
4
Pr[R(x, y)(i−1) ⊕R(x, z)(i−1) = 0]

=
2
3

+
1
3
2−2i−2.

D Proof of Lemma 4

Our task is to determine the probability of the following approximation:

Γi · (x + y)⊕ Γi · (z + w) = Γi · (x + z)⊕ Γi · (y + w).

We add both sides of the approximation and are going to find the probability
that it becomes zero. So we have

Γi·(x + y) ⊕ Γi·(z + w) ⊕ Γi·(x + z) ⊕ Γi·(y + w)

= Γi−1·(R(x, y) ⊕ R(z, w) ⊕ R(x, z) ⊕ R(y, w))

= x(i)y(i) ⊕ z(i)w(i) ⊕ x(i)z(i) ⊕ y(i)w(i) ⊕ (x(i) ⊕ y(i) ⊕ 1)R(x, y)(i−1)

⊕(z(i) ⊕w(i) ⊕1)R(z, w)(i−1) ⊕(x(i) ⊕z(i) ⊕1)R(x, z)(i−1) ⊕(y(i) ⊕w(i) ⊕1)R(y,w)(i−1)

� Λi

Then Λi can be split into eight cases according to the values of
(x(i), y(i), z(i), w(i)). In order to compute Pr[Λi = 0], the following three proba-
bilities are required.

– αi = Pr[R(x, y)(i) ⊕R(z, w)(i) ⊕ 1 = 0],
– βi = Pr[R(x, y)(i) ⊕R(x, z)(i) = 0],
– γi = Pr[R(x, y)(i) ⊕R(z, w)(i) ⊕R(x, z)(i) ⊕R(y, w)(i) = 0].

They can be used to state that

Pr[Λi = 0] =
1
4
αi−1 +

1
2
βi−1 +

1
8
γi−1 +

1
8

(17)

Now the probabilities αi, βi and γi are computed as follows.

(1) From Lemma 1, we get αi = 3
8 + 1

4αi−1. Hence, αi = 1
2−2−2i−3 by Appendix

H.
(2) Using Appendix C, we get βi = 1

2 + 1
4βi−1. Hence, βi = 2

3 + 1
32−2i−2.

(3) By definition, we see that

R(x, y)(i) ⊕ R(z, w)(i) ⊕ R(x, z)(i) ⊕ R(y,w)(i)

= x(i)y(i) ⊕ z(i)w(i) ⊕ x(i)z(i) ⊕ y(i)w(i) ⊕ (x(i) ⊕ y(i))R(x, y)(i−1)

⊕(z(i) ⊕ w(i))R(z, w)(i−1) ⊕ (x(i) ⊕ z(i))R(x, z)(i−1) ⊕ (y(i) ⊕ w(i))R(y,w)(i−1)
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According to the values of (x(i), y(i), z(i), w(i)), we establish that

γi =
1
4
αi−1 +

1
2
βi−1 +

1
8
γi−1 +

1
8

=
1
4

i−1∑
j=0

αj2−3(i−j−1) +
1
2

i−1∑
j=0

βj2−3(i−j−1) + 2−3iγ0 +
1
7
(1 − 2−3i)

=
2
3

+
1
3
2−2i−2

Therefore, by plugging in the Equation (17), the probability becomes

Pr[Λi = 0] =
1

4
(
1

2
− 2−2i−1) +

1

2
(
2

3
+

1

3
2−2i) +

1

8
(
2

3
+

1

3
2−2i) +

1

8
=

2

3
+

1

3
2−2i−2

and gives the final result.

E Proof of Corollary 3

We take both sides of the approximation, add them and find the probability
when it becomes zero so

Γi·(x + y)⊕ Γi·(x + z)⊕ Γi·(y + w) ⊕ Γi·(z ⊕ w)
= Γi−1·(R(x, y)⊕R(x, z)⊕R(y, w))
= x(i)y(i) ⊕ (x(i) ⊕ y(i) ⊕ 1)R(x, y)(i−1) ⊕ x(i)z(i) ⊕ (x(i) ⊕ z(i) ⊕ 1)R(x, z)(i−1)

⊕y(i)w(i) ⊕ (y(i) ⊕ w(i) ⊕ 1)R(y, w)(i−1)

Next, the expression Γi·(R(x, y)⊕ R(x, z)⊕ R(y, w)) is split into the sixteen
cases according to (x(i), y(i), z(i), w(i)). Note that there are four pairs which are
complement of each other. Using the notation of Appendix D, we get

αi = Pr[1⊕R(x, z)i ⊕R(y, w)i = 0] =
1
2
− 2−2i−3

βi = Pr[R(x, y)i ⊕R(x, z)i = 0] = Pr[R(x, y)i ⊕R(y, w)i = 0] =
2
3

+
1
3
2−2i−2

Therefore, we get the final result

Pr[Γi−1·(R(x, y)⊕R(x, z)⊕R(y, w)) = 0] =
3
8

+
1
4
β(i−1) +

1
16
α(i−1)

=
3
8

+
1
4
(
2
3

+
1
3
2−2i) +

1
8
(
1
2
− 2−2i−1) =

29
48

+
1
3
2−2i−4

F Proof of Lemma 6

From the approximation being considered, w.l.g we assume that x = 0 and y = 0
since the variables x and y are independent on the expressions (a + b + k) and
(c + d + k). Then, the approximation is simplified as follows.
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Γi·(x + a) ⊕ Γi·(y + b) ⊕ Γi · (x + c) ⊕ Γi·(y + d) ⊕ Γi·(a + b + k) ⊕ Γi·(c + d + k)

= Γi−1 · (R(a, b) ⊕ R(a + b, k)) ⊕ Γi−1 · (R(c, d) ⊕ R(c + d, k))

Using the recursive relation (15) in Appendix A, we have

(R(a, b)⊕R(a + b, k))(i) ⊕ (R(c, d)⊕R(c + d, k))(i)
= Q1,(i) ⊕Q1,(i−1) ⊕ (L1,(i) ⊕Q1,(i−1))(R(a, b)(i−1) ⊕R(a + b, k)(i−1))⊕
Q2,(i) ⊕Q2,(i−1) ⊕ (L2,(i) ⊕Q2,(i−1))(R(c, d)(i−1) ⊕R(c + d, k)(i−1))

where Q1,(i) = a(i)b(i) ⊕ b(i)k(i) ⊕ k(i)a(i), Q2,(i) = c(i)d(i) ⊕ d(i)k(i) ⊕ k(i)c(i),
L1,(i) = a(i) ⊕ b(i) ⊕ k(i) and L2,(i) = c(i) ⊕ d(i) ⊕ k(i). According to the val-
ues of ten variables (a(i), b(i), c(i), d(i), k(i), a(i−1), b(i−1), c(i−1), d(i−1), k(i−1)), the
above expression is simplified as a function of (R(a, b)(i−1) ⊕ R(a + b, k)(i−1))
and (R(c, d)(i−1) ⊕ R(c + d, k)(i−1)). Hence, by counting appropriate probabili-
ties, we get

Pr[(R(a, b) ⊕ R(a + b, k))(i) ⊕ (R(c, d) ⊕ R(c + d, k))(i) = 0]

=
35
64

− 3
64

· Pr[(R(a, b) ⊕ R(a + b, k))(i−1) = 0] − 3
64

· Pr[(R(c, d) ⊕ R(c + d, k))(i−1) = 0]

+
5
64

· Pr[(R(a, b) ⊕ R(a + b, k))(i−1) ⊕ (R(c, d) ⊕ R(c + d, k))(i−1) = 0]

From Lemma 2, we know that

Pr[(R(a, b)⊕R(a + b, k))(i−1) =0] = Pr[(R(c, d)⊕R(c + d, k))(i−1) = 0] =
1

3
+

1

3
2−2i+1

Therefore, by the recursive relation of Appendix H, for i > 0,

Pr[(R(a, b)⊕R(a + b, k))(i)⊕(R(c, d)⊕R(c + d, k))(i) = 0] ≈ 33
59

=
1
2
(1+2−3.1)

Since Pr[(R(a, b)⊕R(a + b, k))(i)⊕ (R(c, d)⊕R(c + d, k))(i) = 0] is identical
to Pr[Γi−1 ·(R(a, b)⊕R(a + b, k))⊕Γi−1 ·(R(c, d)⊕R(c + d, k)) = 0], the lemma
holds.

G Proof of Lemma 7

Suppose k = 0. Then, the approximation (14) is divided into two independent
approximations as follows.

Γi · (x + a)⊕ Γi · (y + b) = Γi · (x + y)⊕ Γi · (a + b)
Γi · (z + c)⊕ Γi · (w + d) = Γi · (z + w) ⊕ Γi · (c + d)

By applying Lemma 4 twice, we see that above approximation has the bias of
1
9 (1 + 2−2i−2)2 ≈ 2−3.2 for i > 0.
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For k = 1, 2, . . . , 2i, the bias of (14) has the following properties.

– the bias decreases monotonously for k = 1, 2, . . . , 2i−1.
– the bias increases monotonously for k = 2i−1 + 1, . . . , 2i.
– the bias is the highest at k = 2i and is the lowest (around zero) at k = 2i−1.

This bias pattern is repeated for k = 2i + 1, . . . , 2i+2 − 1. If i > 0, the overall
bias of (14) is around a half of the highest bias, which is 2−3.2 ∗ 2−1 = 2−4.2.
Hence, the lemma holds.

H Recursion Relation

Let us remind a calculus on recursion relation. Assume that we have the recursive
relation xn = r · xn−1 + c. If r �= 1, we get 1 + r+ r2 + · · ·+ rn−1 = 1−rn

1−r . Thus,

xn can be expressed as xn = c(1−rn)
1−r + x0 · rn. If r = 1, then xn = x0 + c · n.
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Abstract. The stream ciphers Py, Py6 designed by Biham and Seberry
were promising candidates in the ECRYPT-eSTREAM project because
of their impressive speed. Since their publication in April 2005, a num-
ber of cryptanalytic weaknesses of the ciphers have been discovered. As a
result, a strengthened version Pypy was developed to repair these weak-
nesses; it was included in the category of ‘Focus ciphers’ of the Phase
II of the eSTREAM competition. However, even the new cipher Pypy
was not free from flaws, resulting in a second redesign. This led to the
generation of three new ciphers TPypy, TPy and TPy6. The designers
claimed that TPy would be secure with a key size up to 256 bytes, i.e.,
2048 bits. In February 2007, Sekar et al. published an attack on TPy
with 2281 data and comparable time. This paper shows how to build a
distinguisher with 2275 key/IVs and one outputword per each key (i.e.,
the distinguisher can be constructed within the design specifications);
it uses a different set of weak states of the TPy. Our results show that
distinguishing attacks with complexity lower than the brute force exist
if the key size of TPy is longer than 275 bits. Furthermore, we discover a
large number of similar bias-producing states of TPy and provide a gen-
eral framework to compute them. The attacks on TPy are also shown to
be effective on Py.

1 Introduction

Timeline: the Py-family of Ciphers

– April 2005. The ciphers Py and Py6, designed by Biham and Seberry,
were submitted to the ECRYPT project for analysis and evaluation in the
category of software based stream ciphers [2]. The impressive speed of the
cipher Py in software (about 2.5 times faster than the RC4) made it one
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of the fastest and most attractive contestants. The cipher is designed to be
used with a key of size 32 bytes (the key size may vary between 1 byte and
256 bytes) and an IV of size 16 bytes (the IV size can vary between 1 and
64 bytes).

– March 2006 (at FSE 2006). Paul, Preneel and Sekar reported distin-
guishing attacks with 289.2 data and comparable time against the cipher Py
[7]. Crowley [4] later reduced the complexity to 272 by employing a Hidden
Markov Model.

– March 2006 (at the Rump session of FSE 2006). A new cipher, namely
Pypy, was proposed by the designers to rule out the aforementioned distin-
guishing attacks on Py [3].

– May 2006 (presented at Asiacrypt 2006). Distinguishing attacks were
reported against Py6 with 268 data and comparable time by Paul and Pre-
neel [8].

– October 2006 (to be presented at Eurocrypt 2007). Wu and Preneel
showed key recovery attacks against the ciphers Py, Pypy, Py6 with chosen
IVs [11]. This attack was subsequently improved by Isobe et al. [5].

– January 2007. Three new ciphers TPypy, TPy, TPy6 were proposed by the
designers [1]. These three ciphers can very well be viewed as the strengthened
versions of the previous ciphers Py, Pypy and Py6 where the above attacks
do not apply. The ciphers are designed to be secure for any key size between
1 and 256 bytes.

– February 2007. Sekar et al. published an attack on TPy which requires
2281 data and comparable time [9].

In this paper, we show distinguishing attacks on the ciphers TPy and Py
with data complexity 2275 each. These results outperform the most recent at-
tack on TPy which requires 2281 data [9]. However, it is worth noting that the
attacks described in [7] can also be applied to TPy. In the design specifica-
tions, the TPy and the Py are claimed to be compatible with key size ranging
from 8 bits to 2048 bits. If the ciphers are used with key size longer than 275
bits then our attacks are better than exhaustive search. It is also worth not-
ing that the distinguisher can be built within the design specifications of the
ciphers. To derive the distinguisher, 2275 randomly chosen key/IVs are used
and for each of them one outputword is collected. Note that, according to the
design specification, TPy can run for 261 rounds (note that each round gener-
ates 8 bytes as output) per key where our distinguisher requires only 8 rounds
per key.

In addition to the above distinguisher, we detect biases in a large number
of outputs at rounds r, r + 2, t and u where r > 0; t, u ≥ 5; t �∈ {r, r + 2, u};
u �∈ {r, r+2, t}. We provide a general framework to compute the biases due to the
presence of arbitrarily many weak states. However, we were unable to combine
those biases into a more efficient attack. Combining multiple distinguishers into
a single and more efficient one is still an alluring open problem.



New Weaknesses in the Keystream Generation Algorithms 251

2 The Round Function of TPy

The round functions of the TPy and the Py are identical. Here, we analyze only
the round function of TPy and hence do not describe the key setup and IV
setup. Algorithm 1 describes a single round of the TPy. Array P (which is a
permutation of [0, 1, ..., 255]), array Y (which contains 260 32-bit elements) and
the 32-bit variable s are the inputs to the algorithm. Here, ‘rotate(A)’ denotes a
cyclic rotation of the elements of array A by one position. The ‘ROTL32(s, k)’
operation means that the 32-bit variable s is rotated to the left by k positions.
The output generated in line 5 of the algorithm is labeled ‘first output-word’
and the output-word of line 6 is labeled ‘second output-word’.

Algorithm 1. A Step of TPy
Require: Y [−3, ..., 256], P [0, ..., 255], a 32-bit variable s
Ensure: 64-bit random output

/*Update and rotate P*/
1: swap (P [0], P [Y [185]&255]);
2: rotate (P );

/* Update s*/
3: s+ = Y [P [72]] − Y [P [239]];
4: s = ROTL32(s, ((P [116] + 18)&31));

/* Output 8 bytes (least significant byte first)*/
5: output ((ROTL32(s, 25) ⊕ Y [256]) + Y [P [26]]);
6: output (( s ⊕Y [−1]) + Y [P [208]]);

/* Update and rotate Y */
7: Y [−3] = (ROTL32(s, 14) ⊕ Y [−3]) + Y [P [153]];
8: rotate(Y );

3 Notation and Convention

– Oa(b) denotes the bth bit (b = 0 denotes the least significant bit or lsb)
of the first output-word generated at round a. We do not use the second
output-word anywhere in our analysis.

– Pa, Ya+1 and sa are the inputs to the algorithm at round a. It is easy to see
that when this convention is followed, Oa = (ROTL32(sa, 25)⊕ Ya[256]) +
Ya[Pa[26]]- the index ‘a’ is maintained throughout the expression.

– Ya[b], Pa[b] denote the bth elements of array Ya and Pa respectively.
– Ya[b]i, Pa[b]i denote the ith bit (i = 0 denotes the lsb) of Ya[b], Pa[b] respec-

tively.
– The operators ‘+’ and ‘−’ denote addition modulo 232 and subtraction

modulo 232 respectively, except when used with expressions which relate
two elements of array P . In this case they denote addition and subtraction
over Z.

– The symbol ‘⊕’ denotes bitwise exclusive-or and
⋂

denotes set intersection.
– In Oa(i), sa(i) and Ya[Pb[X ]]i, the index representing bit position, i.e., i de-

notes i mod 32.
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– Y c
a [Pb[X ]]i denotes the complement of Ya[Pb[X ]]i.

– The pseudorandom bit generation algorithm of a stream cipher is denoted
by PRBG.

4 Motivational Observations

Our major observation is the detection of a relation between the elements of the
internal state and the outputs of the TPy which can, eventually, be used to build
a distinguishing attack on the cipher. The relation is outlined in the following
theorem.

Theorem 1. O1(i)⊕O3(i+7)⊕O7(i+7)⊕O8(i+7) = 0 if the following 17 conditions
are simultaneously satisfied.

1. P1[116] ≡ −18 mod 32 (event E1),
2. P2[116] ≡ 7 mod 32 (event E2),
3. P3[116] ≡ −4 mod 32 (event E3),
4. P7[116] ≡ 3 mod 32 (event E4),
5. P8[116] ≡ 3 mod 32 (event E5),
6. P1[72] = P2[239] + 1 (event E6),
7. P1[239] = P2[72] + 1 (event E7),
8. P7[72] = P8[72] + 1 (event E8),
9. P7[239] = P8[239] + 1 (event E9),

10. P3[72] = 254 (event E10),
11. P1[26] = P3[239] + 2 (event E11),
12. P1[72] = 3 (event E12),
13. P3[26] = 0 (event E13),
14. P1[239] = P7[26] + 6 (event E14),
15. P7[153] = 252 (event E15),
16. P6[153] = P8[26] + 2 (event E16),
17. d7(i−7)⊕d8(i−7)⊕ c1(i)⊕d3(i)⊕d1(i+7)⊕ c3(i+7)⊕ c7(i+7)⊕ e7(i+7)⊕ c8(i+7)⊕

e8(i+7) = 0 (event E17).1

Proof. First, we state and prove two lemmata which will be used to establish
the theorem.

Lemma 1. If

1. P1[116] ≡ −18 mod 32,
2. P3[116] ≡ −4 mod 32,
3. P7[116] ≡ 3 mod 32,
4. P8[116] ≡ 3 mod 32

then the following equations are satisfied:

1. O1(i) = s0(i+7) ⊕ Y1[P1[72]]i+7 ⊕ Y c
1 [P1[239]]i+7 ⊕ Y1[256]i ⊕ Y1[P1[26]]i

⊕ c1(i) ⊕ d1(i+7),
2. O3(i+7) = s2(i) ⊕ Y3[P3[72]]i ⊕ Y c

3 [P3[239]]i ⊕ Y3[256]i+7 ⊕ Y3[P3[26]]i+7

⊕ c3(i+7) ⊕ d3(i),
1 The terms c, d, e are the carries generated in certain expressions, the descriptions

of which can be found in the proof of Theorem 1.
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3. O7(i+7) = Y7[P7[72]]i−7 ⊕ Y c
7 [P7[239]]i−7 ⊕ Y6[−3]i+7 ⊕ Y7[P7[26]]i+7

⊕Y6[P6[153]]i+7 ⊕ c7(i+7) ⊕ d7(i−7) ⊕ e7(i+7),
4. O8(i+7) = Y8[P8[72]]i−7 ⊕ Y c

8 [P8[239]]i−7 ⊕ Y7[−3]i+7 ⊕ Y8[P8[26]]i+7

⊕Y7[P7[153]]i+7 ⊕ c8(i+7) ⊕ d8(i−7) ⊕ e8(i+7).

Proof. From Figure 1, we get

Yn[i] = Yn+1[i− 1] (1)

when −2 ≤ i ≤ 256. When i = −3,

Yn+1[256] = (ROTL32(si, 14)⊕ Yn[−3]) + Yn[Pn[153]].

Generalizing (1), we have

Yn[i] = Yn+k[i− k] (2)

when −3 ≤ i− k ≤ 255. Line 5 of Algorithm 1 gives

O7 = (ROTL32(s7, 25)⊕ Y7[256]) + Y7[P7[26]]. (3)

Let the c7 denote the carry in the above equation. Since ROTL32(s7, 25)i =
s7(i−25 mod 32),

O7(i) = s7(i−25 mod 32) ⊕ Y7[256]i ⊕ Y7[P7[26]]i ⊕ c7(i). (4)

Lines 3 and 4 of Algorithm 1 give us

s7 = ROTL32(s6 + Y7[P7[72]]− Y7[P7[239]], P7[116] + 18 mod 32) (5)
⇒ s7(j) = s6(j−k mod 32) ⊕ Y7[P7[72]]j−k mod 32 ⊕ Y c

7 [P7[239]]j−k mod 32

⊕ d7(j−k mod 32) (6)

where k = P7[116] + 18 mod 32, d7(i) = f7(i) ⊕ g7(i) and d7(0) = 1 (f7 and
g7 are the carry terms in (5) which are explained in Sect. 5.2). For simplicity,
henceforth we denote X(i mod 32) by X(i). Thus (6) becomes,

A
B
C

X
Y A1

Y

B
C

C

D

D

E

A1
B1

Y YY
n n+1 n+2

−3
−2
−1

255
256

Fig. 1. The figure shows the update of the S-box Y . Yn[i] = Yn+1[i − 1] when −2 ≤
i ≤ 256. Yn+1[256] = A1 when i = −3 and A1 = (ROTL32(sn, 14) ⊕ A) + Yn[Pn[153]].
Generalizing the above, we can write Yn[i] = Yn+k[i − k] when −3 ≤ i − k ≤ 255.
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s7(j) = s6(j−k) ⊕ Y7[P7[72]]j−k ⊕ Y c
7 [P7[239]]j−k ⊕ d7(j−k). (7)

If j = i− 25 mod 32, then (7) becomes

s7(i−25) = s6(i−k−25) ⊕ Y7[P7[72]]i−k−25 ⊕ Y c
7 [P7[239]]i−k−25 ⊕ d7(i−k−25). (8)

Substituting (8) in (4), we get,

O7(i) = s6(i−k−25) ⊕ Y7[P7[72]]i−k−25 ⊕ Y c
7 [P7[239]]i−k−25 ⊕ Y7[256]i

⊕Y7[P7[26]]i ⊕ c7(i) ⊕ d7(i−k−25). (9)

Next, we have

Y7[256] = (ROTL32(s6, 14)⊕ Y6[−3]) + Y6[P6[153]], (10)
Y7[256]i = s6(i−14) ⊕ Y6[−3]i ⊕ Y6[P6[153]]i ⊕ e7(i) (11)

where e7 is the carry term in (10). Substituting (11) in (9), we get,

O7(i) = s6(i−k−25) ⊕ s6(i−14) ⊕ Y7[P7[72]]i−k−25 ⊕ Y c
7 [P7[239]]i−k−25 ⊕ Y6[−3]i

⊕Y7[P7[26]]i ⊕ Y6[P6[153]]i ⊕ c7(i) ⊕ d7(i−k−25) ⊕ e7(i). (12)

Now, if k = −11 (i.e., k ≡ −11 mod 32 ⇒ P7[116] + 18 ≡ −11 mod 32 ⇒
P7[116] ≡ 3 mod 32) then s6(i−k−25) ⊕ s6(i−14) = 0. Hence, when P7[116] ≡
3 mod 32, (12) becomes

O7(i) = Y7[P7[72]]i−14 ⊕ Y c
7 [P7[239]]i−14 ⊕ Y6[−3]i ⊕ Y7[P7[26]]i

⊕Y6[P6[153]]i ⊕ c7(i) ⊕ d7(i−14) ⊕ e7(i). (13)

By similar arguments, when P8[116] ≡ 3 mod 32,

O8(i) = Y8[P8[72]]i−14 ⊕ Y c
8 [P8[239]]i−14 ⊕ Y7[−3]i ⊕ Y8[P8[26]]i

⊕Y7[P7[153]]i ⊕ c8(i) ⊕ d8(i−14) ⊕ e8(i). (14)

From (9), we get

O1(i) = s0(i−k−25) ⊕ Y1[P1[72]]i−k−25 ⊕ Y c
1 [P1[239]]i−k−25 ⊕ Y1[256]i

⊕Y1[P1[26]]i ⊕ c1(i) ⊕ d1(i−k−25). (15)

When k = 0 (i.e., P1[116] ≡ −18 mod 32), the above equation reduces to

O1(i) = s0(i+7) ⊕ Y1[P1[72]]i+7 ⊕ Y c
1 [P1[239]]i+7 ⊕ Y1[256]i ⊕ Y1[P1[26]]i

⊕ c1(i) ⊕ d1(i+7). (16)

Similarly, when P3[116] ≡ −4 mod 32, we have

O3(i+7) = s2(i) ⊕ Y3[P3[72]]i ⊕ Y c
3 [P3[239]]i ⊕ Y3[256]i+7 ⊕ Y3[P3[26]]i+7

⊕ c3(i+7) ⊕ d3(i). (17)
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From (13) and (14), we derive the following results:

O7(i+7) = Y7[P7[72]]i−7 ⊕ Y c
7 [P7[239]]i−7 ⊕ Y6[−3]i+7 ⊕ Y7[P7[26]]i+7

⊕Y6[P6[153]]i+7 ⊕ c7(i+7) ⊕ d7(i−7) ⊕ e7(i+7), (18)
O8(i+7) = Y8[P8[72]]i−7 ⊕ Y c

8 [P8[239]]i−7 ⊕ Y7[−3]i+7 ⊕ Y8[P8[26]]i+7

⊕Y7[P7[153]]i+7 ⊕ c8(i+7) ⊕ d8(i−7) ⊕ e8(i+7). (19)

This completes the proof. �
Now we state the second lemma.

Lemma 2. s0(i+7) = s2(i) if the following conditions are simultaneously satis-
fied,

1. P1[116] ≡ −18 mod 32,
2. P2[116] ≡ 7 mod 32,
3. P1[72] = P2[239] + 1,
4. P1[239] = P2[72] + 1.

Proof. Equation (5) gives us:

s1 = ROTL32(s0 + Y1[P1[72]]− Y1[P1[239]], P1[116] + 18 mod 32).

The first condition (P1[116] ≡ −18 mod 32) reduces this to

s1 = s0 + Y1[P1[72]]− Y1[P1[239]].

Therefore,

s2 = ROTL32(s0 + Y2[P2[72]]− Y2[P2[239]] + Y1[P1[72]]− Y1[P1[239]],
P2[116] + 18 mod 32).

Conditions 3 and 4 reduce the above equation to

s2 = ROTL32(s0, P2[116] + 18 mod 32).

Finally, with condition 2 (i.e., P2[116] ≡ 7 mod 32), the previous equation be-
comes

s2 = ROTL32(s0, 25)
⇒ s2(i) = ROTL32(s0, 25)i = s0(i−25)

= s0(i+7). (20)

This completes the proof. �
Now we observe that, when the conditions listed under (i) Lemma 1 (i.e., events
E1, E3, E4 and E5) and (ii) Lemma 2 (i.e., events E1, E2, E6 and E7) are
simultaneously satisfied, then the expression O1(i) ⊕O3(i+7) ⊕O7(i+7) ⊕O8(i+7)

is the XOR of the terms which are listed in Table 1 (grouped according to the
bit positions).2 Similarly, the ‘carries’ in Table 1 are elaborated in Table 2.
2 Note that none of the terms listed in Table 1 is of the form Ac because we used the

fact that Ac ⊕ Bc = A ⊕ B in (16), (17), (18) and (19).
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Table 1. Terms generated in O1(i) ⊕ O3(i+7) ⊕ O7(i+7) ⊕ O8(i+7), when events E1 to
E7 simultaneously occur, grouped by their bit positions

Bit position: i − 7 Bit position: i Bit position: i + 7

Y7[P7[72]] Y1[256] Y1[P1[72]]

Y7[P7[239]] Y1[P1[26]] Y1[P1[239]]

Y8[P8[72]] Y3[P3[72]] Y3[256]

Y8[P8[239]] Y3[P3[239]] Y3[P3[26]]

Carries Carries Y6[P6[153]]

Y6[−3]

Y7[P7[26]]

Y7[P7[153]]

Y7[−3]

Y8[P8[26]]

Carries

Table 2. Carry terms generated in O1(i) ⊕O3(i+7) ⊕O7(i+7) ⊕O8(i+7) grouped by their
bit positions

Bit position: i − 7 Bit position: i Bit position: i + 7

d7 c1 d1

d8 d3 c3

c7

e7

c8

e8

If the Y -terms in Table 1 are pairwise equated (this is achieved when the
events E8 through to E16 occur) then we get

O1(i) ⊕O3(i+7) ⊕O7(i+7) ⊕O8(i+7) = d7(i−7) ⊕ d8(i−7) ⊕ c1(i) ⊕ d3(i) ⊕ d1(i+7)

⊕ c3(i+7) ⊕ c7(i+7) ⊕ e7(i+7) ⊕ c8(i+7)

⊕ e8(i+7). (21)

Now, when the RHS of (21) equals zero (i.e., E17 occurs) we get

O1(i) ⊕O3(i+7) ⊕O7(i+7) ⊕O8(i+7) = 0.

This completes the proof. �

5 Computation of the Bias

In this section, we quantify the bias in the outputs of TPy induced by the
fortuitous events similar to the one described in Sect. 4. Now it is important to
note that there may be more than one set of 17 conditions possible, where each
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of them results in O1(i) ⊕ O3(i+7) ⊕ O7(i+7) ⊕ O8(i+7) = 0 (let us assume that
there are n such sets). In Theorem 1, we listed one such set. Our experiments
suggest that these n sets are mutually independent, however, a formal proof of
that is nontrivial.

Each of the events E1 to E5 occurs with approximate probability 1
32 and each

of the events E6 to E16 occurs with probability which is approximately 1
256 . Let

p denote the probability that condition 17 is satisfied. Let F denote the event⋂16
j=1 Ej . Therefore,

P [F ] = (
1
32

)5 · ( 1
256

)11.

We see that there are n F -like events (i.e., the intersection of 16 conditions). Let
Fn denote the union of these n events. Since, each event occurs with approxi-
mately the same probability,

P [Fn] ≈ n · P [F ]

≈ n · ( 1
32

)5 · ( 1
256

)11

= n · 1
2113

.

From Table 1, we get the maximum number of ways that terms of a particu-
lar column can be pairwise equated and hence the upper bound on n can be
calculated to be

(
10
2

)
· 3 · 3 = 405.

5.1 Formulating the Bias

Now, we establish a formula to compute P [O1(i)⊕O3(i+7)⊕O7(i+7)⊕O8(i+7) = 0],
under the assumption of a perfectly random key/IV setup and the uniformity
of bits when Fn does not occur.Our experiments suggest that it is infeasible to
find a set of conditions such that the overall bias (computed on the basis of the
aforementioned assumption of randomness in the event that Fn does not occur)
is canceled or reduced in magnitude. Therefore, this assumption is reasonable.
Let T denote O1(i) ⊕O3(i+7) ⊕O7(i+7) ⊕O8(i+7). Then using Bayes’ rule we get

P [T = 0] = P [T = 0|Fn ∩ E17] ·P [Fn ∩E17] +P [T = 0|F c
n ∪ Ec

17] ·P [F c
n ∪ Ec

17]
= P [T = 0|Fn ∩ E17] ·P [Fn ∩ E17] +P [T = 0|F c

n ∩ E17] ·P [F c
n ∩E17]

+P [T = 0|Fn ∩ Ec
17] ·P [Fn ∩Ec

17] +P [T = 0|F c
n ∩ Ec

17] ·P [F c
n ∩ Ec

17]

= 1 · (n ·p· 1
2113

) +
1
2
· (1 − n · 1

2113
) ·p+ 0 ·P [Fn ∩ Ec

17]

+
1
2
·(1− n · 1

2113
) · (1− p)

=
1
2

+ n · (2p− 1) · 1
2114

. (22)

Hence, we see that the distribution of the outputs (O1(i), O3(i+7), O7(i+7),

O8(i+7)) is biased. The bias is equal to n · (2p− 1) · 1
2114 . In the following section,
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Table 3. Truth table for computing pi (NR=Not Required)

c(i−1) S(i−1) X(i−1) Z(i−1) c(i) Probability

0 0 0 0 0
pi−1

8
0 0 0 1 0

pi−1
8

0 0 1 0 0
pi−1

8
0 0 1 1 0

pi−1
8

0 1 0 0 0
pi−1

8
0 1 0 1 1 NR

0 1 1 0 1 NR

0 1 1 1 0
pi−1

8

1 0 0 0 0
1−pi−1

8
1 0 0 1 1 NR

1 0 1 0 1 NR

1 0 1 1 0
1−pi−1

8
1 1 0 0 1 NR

1 1 0 1 1 NR

1 1 1 0 1 NR

1 1 1 1 1 NR

we provide formulas to compute p, i.e., the probability that E17 occurs; or more
generally, the probability that the 17th condition of each of the n F -like events
occurs, i.e., P [d7(i−7)⊕d8(i−7)⊕c1(i)⊕d3(i)⊕d1(i+7)⊕c3(i+7)⊕c7(i+7)⊕e7(i+7)⊕
c8(i+7) ⊕ e8(i+7)] = 0.

5.2 Biases in the Carry Terms

In this section, we provide formulas to calculate the bias in the carry terms. The
carry terms c and e are generated in expressions of the form (S ⊕X) + Z. We
now proceed to calculate P [cl(i) = 0] assuming that S, X and Z are uniformly
distributed and independent. Under this assumption, P [Si = 0] = P [Xi = 0] =
P [Zi = 0] = 1

2 , that is, the probability that the carry bit at position i equals zero
depends only on i. Stated otherwise, P [c(i) = 0] = P [e(i) = 0]. Let P [c(i) = 0] be
denoted by pi. Since there is no carry on the lsb, p0 = 0. We now have Table 3.

From Table 3, using Bayes’ rule we get

pi =
pi−1

2
+

1
4
.

Solving this recursion, given p0 = 0, we get

pi =
1
2

+
1

2i+1
. (23)

Now, the carry terms f and g are generated in expressions of the form S+X−Z.
This can be rewritten as S+X+Zc+1 since the additions in these two expressions
are modulo 232. The presence of two carries in S+X+Z is demonstrated using
the Figure 2. The carries generated in S + X + Zc + 1 can be thought of as
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g

f

0 0 1 1 1 1 0 1

1

1

01

1
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0

1
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+

+
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0

1
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1

0
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=( 0 1 1 )
2

0

1 0

1

0

0+0+

0

1

0

0

1

Carries

10001110

( modulo 256)

S = 61

X = 221

SUM = 113

Z =87

Fig. 2. An example showing how the carries are generated when three 8-bit variables
S = 61, X = 221 and Z = 87 are added

carries generated in S+X+A where A = Zc and the carries on the lsb f(0) = 1,
g(0) = 0. Let qi denote P [f(i) = 0] and ri denote P [g(i) = 0]. Hence, q0 = 0,
r0 = 1 and r1 = 1. Now we have Table 4.

From Table 4, using Bayes’ rule we get

qi =
1
2

+
5 · qi−1 · ri−1

8
− qi−1

4
− ri−1

4
, (24)

ri+1 =
1
2
− qi−1 · ri−1

4
+

3 · qi−1

8
+

3 · ri−1

8
. (25)

Using the initial conditions, q0 = 0, r0 = 1 and r1 = 1, qi and ri are computed
recursively. Since dm(i) denotes fm(i) ⊕ gm(i) for any m > 0,

1. P [d7(i−7) = 0] = P [d8(i−7) = 0] = qi−7 mod 32 · ri−7 mod 32

+ (1− qi−7 mod 32) · (1− ri−7 mod 32),
2. P [c1(i) = 0] = 1

2 + 1
2i+1 ,

3. P [d3(i) = 0] = qi · ri + (1− qi) · (1− ri),
4. P [d1(i+7) = 0] = qi+7 mod 32 · ri+7 mod 32

+ (1− qi+7 mod 32) · (1− ri+7 mod 32),
5. P [c3(i+7) = 0] = P [c7(i+7) = 0] = P [e7(i+7) = 0] = P [c8(i+7) = 0]

= P [e8(i+7) = 0] = 1
2 + 1

2(i+7 mod 32)+1 .

Using the above formulas, the value of p can be computed for any given i.
Running simulation, we find that the maximum bias in the chosen outputs occurs
when i = 25 which corresponds to p = 0.5− 2−34.2. Hence, (22) gives us

P [T = 0] =
1
2
− n

2147.2

⇒ P [T = 1] =
1
2

+
n

2147.2
,

when i = 25. Substituting n = 405 in the above equation, we get:
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P [T = 1] =
1
2

+
1

2138.5
. (26)

This is an upper bound on the probability that the outputs (O1(i), O3(i+7),
O7(i+7), O8(i+7)) of TPy are biased. From Sect. 4, we found that n ≥ 1. From
the previous discussion, we see that n ≤ 405. Hence, 1 ≤ n ≤ 405. If n = 1, then
P [T = 1] = 1

2 + 1
2147.2 . Thus,

1
2
(1 +

1
2146.2

) ≤ P [T = 1] ≤ 1
2
(1 +

1
2137.5

). (27)

Table 4. Truth table for computing qi and ri+1 using qi−1 and ri−1 (NR=Not Re-
quired)

f(i−1) g(i−1) S(i−1) X(i−1) Z(i−1) f(i) g(i+1) Probability

0 0 0 0 0 0 0
qi−1·ri−1

8
0 0 0 0 1 0 0

qi−1·ri−1
8

0 0 0 1 0 0 0
qi−1·ri−1

8
0 0 0 1 1 1 0 NR

0 0 1 0 0 0 0
qi−1·ri−1

8
0 0 1 0 1 1 0 NR

0 0 1 1 0 1 0 NR

0 0 1 1 1 0 0
qi−1·ri−1

8

0 1 0 0 0 0 0
qi−1·(1−ri−1)

8
0 1 0 0 1 1 0 NR

0 1 0 1 0 1 0 NR

0 1 0 1 1 1 0 NR

0 1 1 0 0 1 0 NR

0 1 1 0 1 1 0 NR

0 1 1 1 0 1 0 NR

0 1 1 1 1 0 1
qi−1·(1−ri−1)

8

1 0 0 0 0 0 0
(1−qi−1)·ri−1

8
1 0 0 0 1 1 0 NR

1 0 0 1 0 1 0 NR

1 0 0 1 1 1 0 NR

1 0 1 0 0 1 0 NR

1 0 1 0 1 1 0 NR

1 0 1 1 0 1 0 NR

1 0 1 1 1 0 1
(1−qi−1)·ri−1

8
1 1 0 0 0 1 0 NR

1 1 0 0 1 1 0 NR

1 1 0 1 0 1 0 NR

1 1 0 1 1 0 1
(1−qi−1)·(1−ri−1)

8
1 1 1 0 0 1 0 NR

1 1 1 0 1 0 1
(1−qi−1)·(1−ri−1)

8

1 1 1 1 0 0 1
(1−qi−1)·(1−ri−1)

8

1 1 1 1 1 0 1
(1−qi−1)·(1−ri−1)

8
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6 The Distinguisher

A distinguisher is an algorithm which distinguishes a given stream of bits from
a stream of bits generated by a perfect PRBG. The distinguisher is constructed
by collecting sufficiently many outputs (O1(25), O3(0), O7(0), O8(0)) generated
by as many key/IVs. To compute the minimum number of samples required to
establish the distinguisher, we use the following corollary of a theorem from [6].

Corollary 1. If an event e occurs in a distribution X with probability p and
in Y with probability p(1 + q) then, if p = 1

2 , O( 1
q2 ) samples are required to

distinguish X from Y with non-negligible probability of success.

In the present case, e is the event O1(25) ⊕ O3(0) ⊕ O7(0) ⊕ O8(0) = 0, X is the
distribution of the outputs O1, O3, O7 and O8 produced by a perfectly random
keystream generator and Y is the distribution of the outputs produced by TPy.
From (27), p = 1

2 and the highest value of q = 1
2137.5 . Hence O( 1

(2−137.5)2
) =

O(2275) output samples are needed to construct the best distinguisher with a
non-negligible probability of success. Note that this is an improvement by a
factor of 26 over the data complexity of 2281 obtained in [9].

7 A Family of Distinguishers

In Sect. 4 we found that the outputs at rounds 1, 3, 7 and 8 are biased allowing
us to build a distinguisher. It is found that there exist plenty of 4-tuples of biased
outputs. The generalization is presented in the following theorem.

Theorem 2. The distribution of the outputs (Or(i), Or+2(i+7), Ot(i+7), Ou(i+7))
of the TPy are biased for many suitably chosen (r, t, u)’s where r > 0; t, u ≥ 5;
t �∈ {r, r + 2, u}; u �∈ {r, r + 2, t}.

The proof is similar to the proof furnished for Theorem 1, however, a detailed
proof has been provided in the Appendix A of [10]. This allows us to construct
a family of distinguishers for the cipher TPy. It seems possible to combine these
huge number of distinguishers in order to construct one single efficient distin-
guisher; however, any concrete mathematical model to combine them is still an
interesting open problem. Another major implication of the above generalization
theorem is the fact that the TPy outputs will remain always biased no matter
how many initial outputwords are discarded from the keystream.

8 Attacks on Py

The PRBG of the cipher Py is identical with that of TPy. The attacks described
in the previous sections exploit the weaknesses in the PRBG of TPy only. There-
fore, all the attacks are applicable to Py also.
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9 Conclusion and Open Problems

The paper develops a family of distinguishers from the outputs (Or(i), Or+2(i+7),
Ot(i+7), Ou(i+7)) of TPy (and Py), where r > 0; t, u ≥ 5; t �∈ {r, r + 2, u};
u �∈ {r, r + 2, t}. Note that the TPy is one of the strongest members of the Py-
family of ciphers. The best distinguisher works with data complexity 2275 which
records an improvement of a factor of 64 over the previous attack. In addition,
we detect a large number of bias-producing states of TPy and compute them in
a general framework. It is reasonable to assume that these weak states can be
combined to mount a more efficient attack on TPy; however, methods to combine
many distinguishers into a single yet more efficient one is still an open problem.
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Abstract. In this paper, we study the performance of timeout-based
queue management practices in the context of flood denial-of-service
(DoS) attacks on connection-oriented protocols, where server resources
are depleted by uncompleted illegitimate requests generated by the at-
tacker. This includes both crippling DoS attacks where services become
unavailable and Quality of Service (QoS) degradation attacks. While
these queue management strategies were not initially designed for DoS
attack protection purposes, they do have the desirable side-effect or pro-
viding some protection against them, since illegitimate requests time out
more often than legitimate ones. While this fact is intuitive and well-
known, very few quantitative results have been published on the potential
impact on DoS-attack resilience of various queue management strategies
and the associated configuration parameters. We report on the relative
performance of various queue strategies under a varying range of attack
rates and parameter configurations. We hope that such results will pro-
vide usable configuration guidelines for end-server or network appliance
queue hardening. The use of such optimisation techniques is comple-
mentary to the upstream deployment of other types of DoS-protection
countermeasures, and will probably prove most useful in scenarios where
some residual attack traffic still bypasses them.

Keywords: Denial of service attack, degradation of service attack, queue
management, timeout, dynamic timeout.

1 Introduction

A denial-of-service (DoS) network attack occurs when the victim receives a ma-
licious stream of packets that prevent the legitimate communication from taking
place. DoS flood attacks consist in sending the victim (typically a server) a higher
volume of traffic than it can handle. This can be achieved either by saturating
the server’s network connection or by using weaknesses in the communication
protocols that typically allow the attacker to generate high server resource us-
age for a limited attacker effort. Distributed denial-of-service (DDoS) attacks
are simply DoS attacks performed by multiple agents, most frequently simul-
taneously. In this paper we direct our attention towards the resource exhaus-
tion attacks on connection oriented protocols. Although the studied-to-death
SYN-flood attack fits well into this category, we use it merely as an example to
explain our approach. As we will discuss, it is our hope that our approach could
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potentially be applied to other TCP-based attacks (e.g. ACK flood) or higher-
level attacks against Web servers (straight HTTP or via SSL), FTP servers,
VPN gateways, mail servers, or even DoS protection mechanisms in upstream
network appliances.

The impact of a DoS attack on a particular system will vary depending on
the protocols and applications involved. Furthermore, an attack can have mea-
surable impact on the Quality of Service (QoS) of a system even when the server
resources are not completely exhausted [21], such as in the case of Degradation
of Service attacks [19]. While degrading QoS or even rendering a service unavail-
able might be possible, this always comes at a cost for the attacker. For a given
service level or attack impact, there is a direct relationship between the resources
expended by the attacker and the target. These tradeoffs have been discussed
for crippling DoS attacks [16,17], but these formalisms cannot be easily applied
to QoS degradation attacks. While some experimental testbeds have been pro-
posed to try to measure these tradeoffs [2], there are in fact very few quantitative
results (modelling or experimental) concerning degradation of service attacks.

Various methods and appliances for protecting against DoS attacks have been
suggested, for example Cisco Guard XT, Captus IPS, COSSACK, DefCOM,
D-WARD, MANAnet Shield, Mazu Enforcer, NetBouncer, Peakflow, Proof of
Work, Pushback, Secure Overlay Services, Traceback and others (see [19,20]
for complete surveys on the topic). These can be viewed as first- and second-
line defences, where first-line defences use traffic profiling or anomaly detection
mechanisms and filter it accordingly [8,25,22], and second-line defences consist in
modifying TCP/IP protocols to positively affect the resource tradeoff in favour
of the defender [3,28,10,12,7].

Nonetheless, it is possible for sophisticated attacks to evade both types of
defences. Thus, a considerable amount of residual attack traffic could still evade
both network- and host-based defences and reach the end server OS and applica-
tion connection queues. When all traffic-discriminating counter-measures have
been bypassed, legitimate and residual attack traffic is indistinguishable. For-
tunately, certain features of the end server can mitigate the impact of residual
traffic, even in those conditions. These features therefore constitute a last line
of defence. Queue management algorithms that were initially designed to min-
imise the impact of network traffic loss or high latency fall into that category.
One of the most common such features is the attribution of timeout periods to
all incoming connections. Protocols that implement this feature and that do not
necessarily require explicit messages to close a connection are called soft protocols
and they perform better than their counterpart hard protocols in unexpected net-
work conditions like DoS attacks [14]. In practice, the timeouts can be adjusted
dynamically according to administrator-configurable thresholds on resource us-
age levels, as has been suggested and implemented in network appliances [10]
and OS [18] for the specific purpose of improving resiliency against DoS attacks.
When these thresholds are reached, the server is placed in a “protective” state,
which in principle has the effect of favouring fast legitimate connections over
attack connections.
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Unfortunately, it is not clear at all what the “optimal” threshold values are,
as there is no quantitative method for estimating the parameters that minimise
the effects of DoS attacks while maintaining equivalent levels of QoS. In the rest
of this paper, we try to address this gap. One of the reasons we are interested
in this is because such features are very general and already in place at the
various network and application layers. Note also that maximising their effec-
tiveness as DoS protections is complementary and in principle compatible with
the deployment and use of other upstream defences.

In the next section we propose a stochastic modelling tool for DoS
attacks, based on Markov chains. Using this model, we analyse three different
timeout-based protection strategies in Sect. 3. We provide in Sect. 4 the experi-
mental results obtained by simulating these strategies according to two different
implementations. Finally, we conclude and give directions for future work in
Sect. 5.

2 Modelling Servers Under DoS Attack with Markov
Chains

Markov chains are a stochastic modelling tool that describe the states and dy-
namics of a system at successive times. They are said to be memoryless if the
probability of transition between any two states is independent of the previous
states. The stochastic process generating state transition events is thus said to
be markovian, which is equivalent to saying that they are distributed in time ac-
cording to a Poisson distribution. Markov chains can also be used to model sys-
tems in which this is not the case, i.e. those where state transitions probabilities
will depend on past history. In instances where the key parameters such as rate of
arrivals and departures are known, the model can be “solved”. First, this means
that given state probabilities at given time, predictions can be made about state
probabilities at a later time. We can also compute steady-state probabilities, which
correspond to the likelihood of the various states at the equilibrium of the system.

Markov chains are suitable for modelling network performance and have been
used in that purpose for many years. In particular, Markov Chains have also
been used as modelling tool in network security. Baras [1] suggests detecting
route falsification attacks in mobile ad-hoc networks (MANET) using a Hidden
Markov Model (HMM). More recent studies [27] show that using edge sampling
techniques along with HMM can be used to reconstruct a network attack path.
HMMs can also be used in Intrusion Detection Systems [11,15], the transitions
between each state in the Markov model being generated by intrusion, detection
and recovery events. Finally, Khan et al.[13] have successfully used Markov Chain
modelling of queues to design DoS traffic detection strategies. In our case, we
will use Markov chains to model the performance of servers under DoS attacks.

2.1 Description of the Model

Typical Markov chain models used in network performance have each state char-
acterised by the number of connections in the system. A maximum number of
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connections c can be served at the same time. Connections arrive with rate λ
and are served with rate μ. In our case, each state in the chain is characterised
by two values: Nl and Nm, the number of connections used by legitimate users
and malicious users, respectively. A maximum number of both legitimate and
malicious connection c can be served in the same time. All connection requests
that arrive when the server is in a saturated state (Nl + Nm = c) will be re-
jected. Transitions between states occur with different rates for the legitimate
and malicious connection requests: λl and μl for the arrivals and servings of
legitimate connections and λm and μm for the arrivals and servings of malicious
connections. The chain has a triangular form where states on the upper line
represent that no malicious connections are present in the system and states on
the diagonal represent that only malicious connections are present in the system
(see Fig. 6 in the appendix). The following events generate transitions between
states:

– connection arrived : the server received a connection request from a client. It
occurs at a rate λ;

– connection completed : the connection was either elevated to a higher-level
protocol, or the client was served with the required information and the
connection was closed successfully. It occurs at a rate μl;

– connection rejected : the server was not able to serve the connection because
no more connections channels were available (queue full). It occurs at a rate
φr;

– connection expired : the server tried to serve the connection but the commu-
nication timed out and the connection was dropped. It occurs at a rate φe;
and

– connection failed : the connection was either rejected or it expired. It occurs
at a rate φ = φr + φe.

In the particular case of a SYN-flood attack, Nl will actually represent the
number of legitimate connections (and Nm the number of malicious ones) that
are half-open. The connection arrived and connection completed events repre-
sent a SYN message and the corresponding ACK message being received by the
server, respectively. In the case of an SSL connection depletion attack, Nl and
Nm represent the number of legitimate and malicious completed TCP connec-
tions, respectively, that have not yet established a secure channel and for which
the negotiation phase is still in progress. The connection arrived events repre-
sent the Client hello message being received by the server and the connection
completed events represent the corresponding Finished message being sent by
the server. It is even possible to consider a nested model, each level representing
a different layer in the protocol stack.

How realistic is this model regarding legitimate arrival and service rates? It
is known that user sessions initiations resemble phone calls [23] and thus have
a Poisson arrival process with exponential inter-arrival times. We will make the
supposition that all incoming connections follow this pattern, assumption that
is used in other DoS related research [21,5]. In most cases, serving rates depend
only of network transit times but in some cases user interaction is also a factor.
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It has been shown that because of the network queueing algorithms, all the
IP packet traffic tends toward a Poisson process as the load increases [4]. For
modelling purposes, we will make the supposition that the network is heavily
used and therefore that legitimate service rate follows a Poisson process model.
According to our assumption, connections completed events are generated at
exponential intervals of time from the connection arrived events, if the timeout
has not elapsed. Otherwise, connection expired events are generated at timeout
intervals from the connection arrived events.

The rate at which connection completed messages are generated by the legit-
imate clients is μc. Only messages that arrive to the server before their timeout
elapses will generate connection completed events; we thus have that μl ≥ μc. All
the other will be ignored by the server and connection expired events are gener-
ated when the timeout elapses. Therefore, the Probability Distribution Function
(PDF) of the legitimate connection service time Gl(t) will have the form of
an exponential distribution for t smaller than the timeout tout, followed by an
appropriately weighted delta Dirac function at tout

Gl(t) =

⎧⎪⎨⎪⎩
μce

−tμc t < tout

δ(t− tout)pexpire t = tout

0 otherwise
(1)

where

pexpire =
∫ ∞

tout

μce
−tμcdt = e−toutμc . (2)

The mean service time and the service rate for legitimate connections are

tl �
∫ ∞

0

tGl(t)dt =
1− e−toutμc

μc
; μl � 1

tl
=

μc

1− e−toutμc
(3)

While we model legitimate packet arrivals as a Poisson process this is not
general for attack traffic as the attacker is free to use whatever strategy he or she
wants. Even though there is no proof that this is optimal, the attacker might want
to mimic the legitimate arrivals process in order to thwart certain time analysis
detection methods. In any case, we will assume that the residual attack traffic,
unfiltered by upstream defence mechanisms is distributed according to a Poisson
distribution, because otherwise it could have been potentially discriminated by
such techniques. We make this assumption in order to be able to construct a
simple enough mathematical model that we can numerically resolve. However,
we will later explore in Sect. 4 attacks for which this is not true.

Concerning the malicious packet service process, the strategy of the attacker is
to exhaust the server resources using the smallest effort possible. This is achieved
by generating the connection arrived events and then abandoning the commu-
nication without any notice to the server. Malicious connections will eventually
all expire and generate connection expired events at tout intervals of time from
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the connection arrived events. The malicious connection service rate is in this
case μm = 1/tout.

Although the triangular DoS Markov chain model that we presented describes
the states in which the server will be during an attack, these states are not
directly visible because individual connections can not be labelled as legitimate
or malicious. For this reason, we will analyse the visible Markov chain that has
c+1 states, each state being characterised by the number of connections N used
by both legitimate and malicious users. The probability that the visible Markov
chain is in a state N is the sum of all probabilities that the hidden Markov chain
is in state (Nl, Nm) with Nl +Nm = N .

The visible connection arrival process is the sum of two Poisson processes
with rates λl and λm and thus also a Poisson process with rate λ = λl + λm. In
a Markov chain model the load is defined as the ratio between the arrival and
service rates. In our case, we distinguish the load generated by the legitimate
users ρl = λl/μl, and the load generated by malicious users ρm = λm/μm. The
overall load ρ cannot be computed directly because the service processes are
not memoryless. Our goal is to compute the overall load by approximating the
overall mean service time t̃. We consider t̃ to be constant in time and equal to
the average of the mean legitimate service time tl and mean malicious service
time tm weighted by the legitimate load and the malicious load, respectively:

t̃ =
ρl

ρl + ρm
tl +

ρm

ρl + ρm
tout (4)

The approximative mean service rate in the visible chain is:

μ̃ � 1
t̃

=
μlμm(λmμl + λlμm)

λmμ2l + λlμ2m
(5)

We can now calculate an approximative overall load generated by both legitimate
and malicious users as ρ̃ � λ/μ̃. With this approximation we can compute the
steady-state probability that the system is in the state k using Erlang’s loss
formula:

pk =
ρ̃k

k!
/

c∑
i=0

ρ̃i

i!
(6)

2.2 Approximate Solutions to the Model

Because the connections are served independently, the only significant perfor-
mance measure is the probability φ that a legitimate connection will fail, which
is equal to the probability that the connection will be rejected φr plus the prob-
ability the connection will expire φe, i.e. φ = φr + φe.

The blocking probability is by definition the probability that the system is
saturated, i.e. that the queue is full. A connection is rejected if the server is
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saturated when the connection arrived event is generated. The probability that
a connection is rejected φr is thus equal to the probability that the server is in
state c at that moment. If the system were at equilibrium, this will be exactly
the steady-state probability pc. If we assume that the system will never be far
from equilibrium, we can approximate it as such, i.e. φr ≈ pc.

A connection expires with the probability pexpire if the server is not saturated
when the connection arrived event is generated. The connection expire proba-
bility can also be approximated with the steady-state probabilities as follows:

φe ≈
c−1∑
k=0

pkpexpire (7)

In this model, the resources that the attacker spends to achieve a negative
impact on the service level are proportional to the residual malicious connections
arrival rate λm; the actual malicious traffic arrival rate at the upstream defences
might be significantly higher. The resources that the server spends to achieve
the required service level is represented by the capacity c of the queue. We are
interested in how the tradeoff between the attacker and server resources varies
for the same legitimate connection fail probability φ, or equivalently for the same
connection complete probability 1−φ. Even though the fully expanded expression
of φ is quite complex, what lies beneath it is a tradeoff between these quantities

(a)

tout
0

P
ro
ba
bi
lit
y

φe

φr
φ

(b)

Fig. 1. (a) Steady-state legitimate connection complete probabilities for various queue
capacities c (x-axis) and attack rates λm (y-axis), at fixed legitimate arrival rate λl = 10
cnx/s, mean service time tl = 1 s, and timeout tout = 75 s. For each pair (x, y), the
corresponding connection complete probability is indicated as a gray-scale value for
the corresponding rectangular region of the graph. Better quality of service (i.e. higher
probability, lighter shades) are achieved with bigger queues and lower attack rates.
The contour curves connect points (x, y) with the same connection complete probabil-
ities (same colour), and are approximately represented by straight lines in the figure.
(b) Variation of the steady-state reject, expire and fail probabilities, φr, φe, and φ,
respectively, as a function of the timeout value tout.
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that is essentially linear for the same connection complete probability, as we
have verified with several numerical calculations. Fig. 1(a) illustrates the contour
curves for the connection complete probability, for different values of attack
rates and server capacities. Note that they are essentially straight, indicating
that an increase in attack rate by the attacker can be efficiently matched by a
corresponding linear increase in queue capacity by the defender, while keeping
the same quality of service; this confirms previously known intuition by experts
in the network security field.

Although the residual traffic rates represented might seem ridiculously small,
this traffic would have already been severely filtered by other upstream defences,
if such were present. Thus, in order to get this small amount of residual traffic
through, the attacker might have had to generate large amounts of traffic at
the perimeter, resulting in a high resource cost. See Table 1 in the Appendix
for default configuration parameters of different implementations of connection-
oriented protocols.

Given a certain attack rate λm and server capacity c, the parameter that
can be optimised by the defender is the timeout. As Fig. 1(b) shows, the two
components of the legitimate connections reject probability φ, φe and φr , change
in opposite directions as we vary the timeout: φe decreases exponentially with
the timeout, while φr increases. When no attack is present φr is null for λl < μlc;
it has the limit λl − μlc for infinite timeout when λl > μlc. When an attack is
present, φr has the limit λl when timeout is infinite. For a specific attack rate and
capacity there is an optimal timeout value that can be calculated numerically.

3 Dynamic Timeout Management Strategies

We will now analyse two queue management strategies that consist in dynam-
ically adjusting the timeout. This is, of course, in contrast with the standard
strategy of having a fixed, non-adaptive connection timeout value. Ideally we
would want to make this adjustment by looking at the triangular Markov chain
and choosing a timeout according to the number of legitimate and malicious
connections in the server. Unfortunately, this model is not visible because the
server is unable to distinguish if a connection request is legitimate or malicious.
Therefore, the only information available to adjust the timeout is the total num-
ber of connections used. While the threshold prevention strategy is already im-
plemented in Microsoft Windows Server 2003 and some security appliances, the
second strategy, linear timeout prevention, is a concept that we introduce. Fig. 7
in the appendix illustrates how they fit in the taxonomy of DDoS defence of [20].

There are for each of these strategies, two alternate methods for deciding how
to flush out timed out connections: deterministic and deferred. The deterministic
method consists in tagging each connection with a pre-determined expiry time
upon its arrival. The expiry time is simply the arrival time plus the timeout value
at the moment of arrival. To take into account the fact that the reality of the
system might have changed drastically since the arrival of a connection, another
approach seems more suitable: to defer the assignment of an expiry time, such
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that if the timeout decreases after its arrival, the connection is checked against
the new timeout value. Thus at any given time, connections are flushed if the
time elapsed since their arrival is bigger than the current timeout value. We refer
to this method as the deferred method. In the rest of this section, we instantiate
the general Markov models of Sect. 2 and compute steady-state probabilities for
the deterministic method only. We will nonetheless present simulation results
for both in Sect. 4.

3.1 Threshold-Based Timeout Adjustment Strategy

This consists in using a normal, long timeout t0 at first. If the number of connec-
tions used in the server is greater then a certain threshold S, a shorter, attack
timeout t1 will be used. The timeout used will depend at all times on the state
k in which the server is:

t
(k)
out =

{
t0 k < S

t1 otherwise
(8)

The probability that an individual connection will expire pexpire, the legitimate
service rate μl and the approximative overall service rate μ̃ described in (2), (3)
and (5) all become state dependent:

p
(k)
expire=e−t

(k)
outμc ; μ

(k)
l =

μc

1− e−t
(k)
outμc

; μ̃(k) =
μ
(k)
l μm(λmμ

(k)
l + λlμm)

λm(μ(k)l )2 + λlμ2m
(9)

We use the same principle as before to calculate the probability that the server
is in a specific state k using Erlang’s loss formula:

pk =
1
k!

k−1∏
j=0

λl + λm

μ̃(j)

/ c∑
i=0

⎛⎝ 1
i!

i−1∏
j=0

λl + λm

μ̃(j)

⎞⎠ (10)

Similar to the case where no timeout adjustment is made, the significant per-
formance measure φ representing the legitimate connection fail event probability
is calculated as:

φ = φr + φe = pc +
c−1∑
k=0

pkp
(k)
expire (11)

The tradeoff between the attacker and server resources is still linear but more
favourable for the server than with a fixed timeout. Fig. 2 illustrates this tradeoff
for numerical values of the rates (λl and μl), timeouts (t0 and t1) and threshold
S similar to what we can find in Microsoft and McAfee products that use this
strategy in a real-life scenario.

3.2 Linear Timeout Adjustment Strategy

This strategy differs from the threshold-based one in the way the timeout is
decreased. Instead of suddenly decreasing the timeout when the server state
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(a) (b)

Fig. 2. Steady-state legitimate connection complete probabilities for various queue
capacities c (x-axis) and attack rates λm (y-axis), at fixed legitimate arrival rate λl = 10
cnx/s, mean service time tl = 1 s, and timeout values t0 = 75 s, t1 = 1 s for (a) a single
threshold at S = c/2, and (b) linear adjustment. Connection complete probabilities for
each combination (x, y) of queue size and attack rate is represented by gray-scaling the
corresponding rectangular region.

reaches a certain threshold, this strategy gradually decreases the timeout as
the number of connections in the server increases. When no connection is used
(i.e. the server is in the state 0) an empty-queue long timeout t0 is used; when
all connections are used (i.e. the server is in the state c), a full-queue shorter
timeout t1 is used; and otherwise, a linear interpolation of the two values is used
in all other server states. Thus, (8) becomes t(k)out = t0 + (t1 − t0)k/c.

The same definitions in (9) that describe the individual connection expire
event probability p

(k)
expire, the legitimate service rate μ

(k)
l and the approxima-

tive overall service rate μ̃(k) can be inserted in the Erlang loss formula (10) to
calculate the legitimate connection fail event probability:

φ = φr + φe = pc +
c−1∑
k=0

pkp
(k)
expire (12)

Once again, we are interested in the tradeoff between the attacker and server
resources. Analysis of the two protection strategies show that for the same values
of systems parameters and traffic (within the range explored), the linear timeout
protection strategy could perform better than the threshold timeout protection
strategy. These results are illustrated in Fig. 2(b). Finally, it is important to note
that while the linear timeout adjustment strategy is slightly more complex than
the threshold-based one, the computational overhead for a server implementing
it is negligible.
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4 Experimental Results and Interpretation

We implemented these two strategies, in both their deterministic and deferred
variants, and measured their performance using a home-made traffic simulator.
We also implemented and measured the performance of the standard fixed-
timeout strategy, for comparison. The legitimate and residual malicious
connection requests were generated using Poisson processes. The connection com-
plete events for legitimate connections were also generated using a Poisson pro-
cess. The residual attack traffic was generated in two different ways: a) a Poisson
process, in order to validate the theoretical model, and b) a deterministic process
with bursts of instantaneous traffic at regular time intervals; the volume of each
burst adjusted such that the averaged traffic rate would always remain the same.

In the first case, we conducted simulations with parameters equivalent to those
of a hardened Web server under attack. The queue capacity was set to a more
realistic 8000 cnx and shorter timeout values were used: tout = 10 s, t0 = 10 s,
t1 = 0.2 s. The range of attack rates explored went from a modest 128 cnx/s
to a very respectable 65536 cnx/s, equivalent to a 26 Mbps (!) residual attack
bandwidth. For all strategies, nine different input data sets were used (except
for the linear deferred, where only one simulation was run). The averaged results
are shown in Fig. 3 and they give a clear picture of the relative performance of
the various methods we have discussed here; the maximum standard deviation
for performance in all runs was 0.023.

Fig. 3. Legitimate connection complete rate (y-axis) for various strategies, with fixed
queue size c = 8000, legitimate traffic rate λl=100 cnx/s, mean service time tl = 0.2 s,
and timeout values t0=10 s and t1=0.2 s, for various relative virulence (x-axis)
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In order to better understand these results, it is useful to define the notion
of relative attack virulence as the ratio between the rate of attack λm and the
queue size c. Intuitively, it corresponds to how many queues per second the at-
tack could fill up, if there was no timeout and no legitimate traffic. In fact, our
first observation is that virulence is indeed the most important parameter affect-
ing completion probabilities. We have confirmed this by running simulations at
various combinations of attack rate and queue size, and have observed the same
linearity between them as we have described in Sect. 3 for the theoretical model
(see Fig. 4 in the appendix for more details).

As can be seen, at low virulence (< 0.05 s−1) the QoS degradation is negligible,
and at very high virulence (> 16 s−1) the degradation is equally unacceptable for
all strategies. In between these values, which constitutes the “window of interest”
of these results, several conclusions can be drawn with respect to the relative
performance of these strategies that confirm the theoretical predictions of Sect. 3.
First, both timeout adjustment strategies are much better than those with a fixed
timeout. Second, linear adjustment performs slightly better than the threshold-
based timeout adjustment. In particular, the differences in performance can be
as high as 20%, for virulence around 2 s. This corresponds to a relatively high
residual attack rate of 16,000 cnx/s (6.5 Mbps) at which all strategies would
notice a significant decrease in QoS (at least 30% legitimate connections lost),
except the linear deferred strategy where QoS degradation would be very small
(a few percent). Finally, let us emphasise that these conclusions are quite general.
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We ran a separate set of simulations with values typical of an unprotected TCP
stack in an unhardened OS. For the same relative virulence, the QoS degradation
results obtained are very similar, hence re-confirming the relative performance
of the various strategies.

In the second case, we explored the performance of these strategies against
attack traffic not generated according to a Poisson process, something we could
not do with our theoretical model. The results of these simulations are shown
in Fig. 4, where we show the performance of the strategies for a fixed attack
rate and various burst inter-arrival times. First, we notice that a Poisson attack
strategy is not always optimal for the attacker, as a significant degradation of
QoS happens at an inter-arrival rate of 2 s (identified with a vertical line in
Fig. 4). This value is particularly significant as at this virulence level the queue
is completely filled with attack traffic at every burst, and the only time that
legitimate traffic can be serviced is after some of these packets have timed out
and before the next burst. This is akin to a “resonance effect” where the attack
characteristics are matched to those of the queue. This is optimal to the attacker,
first because higher inter-arrival times results in bursts that are oversized and
waste attack packets, and in addition result in an increased time window in
which legitimate packets can be serviced. Consequently, QoS levels re-establish
themselves linearly with respect to inter-arrival times. Second, if inter-arrival
time is decreased, burst volume also decreases thus leaving space in the queue
for legitimate requests arriving before the next burst to be serviced.

Nonetheless, the relativeperformance of the queue management strategies is the
same as in the Poisson attack case. The only notable deviation is that the linear
deterministic adjustment strategy is more robust to the queue resonance effect de-
scribed above. Its performance is better than the linear deferred method (and all
others) at all inter-arrival time settings, except for low-volume, frequent bursts.

5 Conclusion and Future Work

In this paper we made an effort to understand the effectiveness of queue man-
agement strategies against DoS attacks. We first constructed a Markov model
describing the behaviour of a server under DoS attack that tries to exhaust the
available connection slots in the queue. This model has allowed us to gain in-
tuition on the likely tradeoffs between the various parameters that characterise
a system under attack (traffic and service rates, queue size, etc.). Of particular
interest, but relatively unexplored, is the possibility of optimising queue man-
agement parameters such as timeout and queue capacity with the respect to an
expected residual attack rate and QoS requirement. There are however a few
limitations to this model that should be the object of further research. First, we
have used the steady-state approximations, thus assuming equilibrium, which
is not accurate in the case of high residual traffic rates. Second, we have not
described in this paper the model for analysing the deferred method of policing
timeout connections out of the queue.
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Nonetheless, from the analysis of the model in combination with the simulation
results (which include non-Poisson residual traffic distributions), several interest-
ing conclusions can be drawn that should be of immediate application for those
vendors and system administrators that are incorporating or using such types of
strategies in OS and applications in host servers or in anti-DoS network appliances:

1. The tradeoff between residual attack rate and queue capacity is indeed lin-
ear for almost all strategies and scenarios. This confirms previously known
empirical evidence.

2. Dynamically adjusting timeout is always a good idea, except for coarse
threshold-based adjustments that are overprotective in the case of light resid-
ual attack traffic.

3. Fine-grained linear timeout adjustments always outperforms fixed timeout
and threshold-based adjustments, and is significantly better for moderate
attack traffic rates.

4. The deterministic method of policing connections out of the queue is more ro-
bust to attack parameter optimisation (the “resonance effect”) and has lower
CPU overhead. However, the deferred method performs better against Pois-
son attacks, at the cost of a CPU overhead linear in the size of the queue.

We hope to further confirm these findings in future work by a) exploring a
wider range of attack strategies and queue management algorithms and parame-
ters in simulation, and b) conducting actual experiments in laboratory networks
pitting various attacks against implementations of these strategies in different
OS and applications. In these experiments we hope to test in conditions be-
yond some of the modelling assumptions made, such as Poission service rates for
legimitate connections. In particular, we are aware that RTT distributions tend
to be heavy-tailed [26], and we hope to test our results such conditions which
are probably more realistic for normal network conditions.

Finally, while the work shown here is only applicable as-is to SYN-flood at-
tacks it has the potential to be applied to other types of connection depletion
attacks for TCP or other higher level protocols. One of the immediate difficul-
ties of generalising this work, is that the standards for most relevant protocols
(e.g. HTTP v1.1 [9], TLS v1.1 [6] and FTP [24]) do not define connection timeout
mechanisms. Nonetheless, several applications that implement these protocols do
include such timeout mechanisms (see Table 1 in the Appendix), and as such
some of the results obtained might be applied to make them more resilient to the
corresponding version of connection depletion attacks. Verifying this intuition for
such protocol implementations is the object of ongoing research by our group.
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A Additional Tables and Figures

Mean results of the legitimate connection completion rates when using the fixed-
threshold and the linear timeout protection strategies are presented in Fig. 5.
The standard deviation was smaller than 10−2 for all scenarios and strategies
tested.

Table 1. Minimal attack rate exhausting all the connections of a server configured by
default

Protocol Server Queue size c [cnx] Timeout tout [s] Attack rate λm [cnx/s]

Linux 2.6.20 1024 180 5.7
TCP Solaris 9 1024 60 17.1

Windows 2003 1000 21 47.6

HTTP/1.1 Apache 2.0 150 300 0.5
IIS 6.0 8000 120 66.7

http://tools.ietf.org/html/rfc959
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Table 2. Simulation results showing connection success rate for all strategies and differ-
ent legitimate connection request rates, λm=10000 cnx/s, mean service time tl=0.2 s,
and timeout values t0=10 s and t1=0.2 s

Legit. rate λl

[cnx/s]
No protection Threshold det. Threshold def. Linear det. Linear def

128 9.08% 66.22% 85.86% 59.63% 92.40%
16384 9.01% 64.08% 62.43% 64.93% 87.25%

(a) (b)

(c) (d)

Fig. 5. Simulation results showing legitimate connection complete frequencies for var-
ious queue capacities and attack rates, λl=10 cnx/s, μl=1 cnx/s, t0=75 s and t1 = 1 s,
for the single threshold, (a) and (b), and linear strategies, (c) and (d), using the deter-
ministic and deferred methods, respectively
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Abstract. Program obfuscation is a semantic-preserving transforma-
tion aimed at bringing a program into such a form, which impedes the
understanding of its algorithm and data structures or prevents extracting
of some valuable information from the text of a program. Since obfus-
cation could find wide use in computer security, information hiding and
cryptography, security requirements to program obfuscators became a
major focus of interests for pioneers of theory of software obfuscation.
In this paper we also address the issue of defining security of program
obfuscation. We argue that requirements to obfuscation may be different
and dependent on potential applications. Therefore, it makes sense to
deal with a broad spectrum of security definitions for program obfusca-
tion. In this paper we analyze five models for studying various aspects of
obfuscation: “black box” model of total obfuscation, “grey box” model
of total obfuscation, obfuscation for software protection, constant hid-
ing, and predicate obfuscation. For each of these models we consider the
applications where the model may be valid, positive and negative results
on the existence of secure obfuscation in the framework of the model,
and relationships with other models of program obfuscation.

Keywords: Program obfuscation, security, Turing machine, encryption.

1 Introduction

To obfuscate a program means to bring it into such a form which hampers as
much as possible the extraction of some valuable information concerning algo-
rithms, data structures, secrete keys, etc. from the text of a program. Obfusca-
tion can be viewed as a special case of encryption. One minor difference is that
plaintext (original program) needs not be efficiently extractable from cryptogram
(obfuscated program). The main difference seems to be decisive: a cryptogram
itself must be an executable code equivalent to the original program. The latter
is the reason why obfuscation attracts considerable interest of many researchers
in cryptography and computer security.

Obfuscation is a relatively new topic in computer science. It was first men-
tioned (without using the term “obfuscation”) in the seminal paper by Diffie and
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Hellman [15]. When introducing the concept of public-key cryptosystem, they
noticed that, given any means for obscuring data structures in a private-key en-
cryption scheme, one could convert this algorithm into a public-key encryption
scheme. Software engineering community became acquainted with obfuscation
through the paper by Collberg et al. [10] where it was presented as an effective
means for protecting software intellectual property against reverse engineering.
These papers marked the beginning of two lines of research in program obfusca-
tion, namely, obfuscation for the purposes of cryptography and obfuscation for
software engineering and computer security.

Program obfuscators could enjoy wide application in cryptography; a secure
program obfuscation would allow one to convert private-key encryption schemes
into public-key ones, to design homomorphic public-key cryptosystems, to re-
move random oracles from cryptographic protocols, etc. But in all these cases
program obfuscation should comply with some security requirements used in
cryptography. Barak et al. initiated in [3] a theoretical investigation of obfusca-
tion. They introduced the concept of “virtual black box” security: an obfuscation
O is secure iff anything one can efficiently compute given an obfuscated program
O(M) one could also efficiently compute given only oracle access to the original
program M . They also proved that some families of functions F are inherently
unobfuscatable in the following sense: there is a property P such that the value
P (f) can be efficiently computed, given any program that computes a function
f ∈ F , but no efficient algorithm can compute P (f) when it is given only or-
acle access to f . This negative result was strengthened in [18,22,32] for some
other variants of “virtual black box” security. Positive results were obtained
also: a secure obfuscation is possible (under some rather strong cryptographic
assumptions) for programs that compute point functions evaluating to zero al-
most everywhere (see [22,24,29,32]).

There are also a lot of problems in software engineering and computer se-
curity where program obfuscation would be very much helpful. Over the years
it was found that obfuscation as a low cost means may be used for preventing
reverse engineering [10,11], defending against computer viruses [9], protecting
software watermarks and fingerprints [2,12], providing security of mobile agents
[14,21], maintaining private searching on streaming data [26]. Unfortunately,
obfuscation is also well-suited for some malevolent purposes, e.g. for obscuring
malwares [7,27] and some types artificial vulnerabilities in protection systems
[4]. These and some other applications have given impetus to the development
of numerous obfuscation techniques (see, e.g. [1,8,11,13,23,25,31]). For the most
part these approaches are no more than heuristics (sometime rather sophisti-
cated) intended for distracting program analysis algorithms and impeding thus
the understanding and reverse engineering of obfuscated programs. The princi-
ple drawback of all known obfuscation techniques is that they do not refer to
any formal definition of obfuscation security and do not have a firm ground for
estimating to what extent such methods serve the purpose.

This brief overview of the current state of art in software obfuscation allows
some conclusions.
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– The applications of program obfuscation are notably diversified, and the
objectives to be pursued in these applications are also different. When ob-
fuscation is intended to turn a private-key cryptosystem into a public-key
one it is expected that such transformation hides a secret key but not neces-
sarily an implementation of the encryption algorithm. On the contrary, when
obfuscation is designed for software protection against reverse engineering
it is often bound to hide only the implementation of the most valuable al-
gorithms but not a processed data. This means that the term “obfuscation
problem” is but a generic name for the set of particular problems, each being
determined by the specific security requirement.

– There is considerable gap between negative and positive results. Actually, the
authors of [3] proved the impossibility of a universal obfuscating program by
presenting a family of functions such that every program which computes any
of these functions readily betrays a secret when being applied to itself (cf.
self-applicability problem for Turing machines). The positive results were
obtained in [5,24,32] only for a very small class of functions under strong
cryptographic assumptions. Although these results were extended in [16] to
the more interesting case of proximity queries, nothing is known about the
(im)possibility of effective obfuscation for common cryptographic algorithms,
or any meaningful class of programs (say, finite automata) under standard
cryptographic assumptions against reasonably weak security requirements.

– There is considerable gap between theory and practice of program obfusca-
tion. There are many papers which suggest various approaches to designing
obfuscating transformations of programs; some of them are implemented in
academic or commercial toolkits for program obfuscation. But the influence
of fundamental results from [3,18,24,32] on this branch of software engineer-
ing is minor: security requirements studied in the context of cryptographic
applications are either too strong or inadequate to many software protection
problems emerged in practice.

We believe that further progress in the study of program obfuscation may
ensue primarily from the development of a solid framework which makes it pos-
sible to set up security definitions for program obfuscation in the context of
various applications. This would help us to reveal the most important com-
mon properties required of any type of program obfuscation. Having access to
a variety of security definitions one may also understand better what security
requirements one or other obfuscating transformation complies with and thus
estimate both the potency and the drawbacks of a particular program obfusca-
tion technique. Intuition suggests that some weakly secure program obfuscation
is possible: everybody dealing with program understanding knows that in many
cases even small programs require considerable efforts to reveal their meaning. A
variety of new formal security requirements for program obfuscation would offer
a clearer view of this observation. Finally, when new formalizations of security
requirements for software obfuscation are brought into service, this opens new
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channels for adopting formal methods from computer science and cryptography
to the problems of software protection.

In this paper we address the issue of defining security of program obfusca-
tion. We argue that requirements to obfuscated programs may be different and
are dependent on potential applications. To this end we consider five models
for studying various aspects of obfuscation. We take a simulation paradigm and
“black box” model of total obfuscation defined in [3] as a basis. Strong im-
possibility results obtained in [3] leave open the following question: whether
there exist some weaker meaningful forms of security requirements that admits
the existence of provably secure obfuscator. In attempt to find an answer to
this question we try to adopt this model to various applications where pro-
gram obfuscation may be used. This bring us to four new formal models of pro-
gram obfuscation, namely, “grey box” model of total obfuscation, obfuscation
for software protection, constant hiding, and predicate obfuscation. We study
the basic properties of these models, positive and negative results on the exis-
tence of secure obfuscation in the framework of the models, and relationships
with other models of program obfuscation. The key notions of program ob-
fuscation studied in this paper have been introduced in preliminary form in
Technical Report [30]. We believe that these new models of program obfusca-
tion would provide a good framework for analyzing the potency of obfuscating
transformations developed in software engineering for the purpose of program
protection.

2 Notation

In complexity theory there is a number of definitions of a program. Two of
them can be regarded as commonly accepted ones. The first says that program
is a Turing machine, whereas the second defines program as a Boolean circuit.
Accordingly, a secure obfuscation can be defined either in terms of Turing ma-
chines, or in terms of circuits (see [3]). For the sake of uniformity we restrict our
consideration to Turing machines only.

We use TM as a shorthand for Turing machine. PPT denotes probabilistic
polynomial-time Turing machine. For PPT A and any input x the output A(x) is
a random variable. When we write “for any A(x)” we mean a universal quantifier
over the support of A(x).

For a TM we will write |A| to denote the size of A. For a pair of TMs A and
B, A ≈ B denotes their equivalence, i.e. A(x) = B(x) holds for any input x.

Function ν : N → [0, 1] is negligible if it decreases faster than any inverse
polynomial, i.e. for any k ∈ N there exists n0 such that ν(n) < 1/nk holds for
all n ≥ n0. We will sometimes write neg(·) and poly(·) to denote unspecified
negligible function and positive polynomial, respectively.

We write x ∈R D to indicate that x is chosen uniformly at random in the
set D.
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3 Total Obfuscation

3.1 “Black Box” Model

This concept of obfuscation was introduced and investigated by Barak et al. in
the paper [3]. Ideally, a totally obfuscated program should be a “virtual black
box”, in the sense that anything one can deduce from its text could be also com-
puted from its input-output behavior. This notion admits various formalizations
according to what an adversary party regards as a success. The weakest form is
that when an adversary tries to compute any predicate. Below we recall briefly
basic definitions of “virtual black box” obfuscation security.

Definition 1 ([3]). A probabilistic algorithm O is a “virtual black box” obfus-
cator if it complies with the following requirements:

1. (functionality) For every TM M any output O(M) of O on input M describes
a TM that computes the same function as M , i.e. M ≈ O(M).

2. (polynomial slow-down) The description length (size) and running time of
any TM O(M) are at most polynomially larger than that of M , i.e. there
exists a polynomial p such that for every TM M and any O(M), |O(M)| ≤
p(|M |) and if M halts in t steps on some input x then O(M) halts within
p(t) steps on x.

3. (security) For any PPT A (adversary) there is a PPT S (simulator) and a
negligible function ν such that

|Pr{A(O(M)) = 1} − Pr{SM (1|M|) = 1}| = ν(|M |). (1)

holds for all TMs M .

The main result of Barak et al. [3] is negative: secure obfuscation is impossible.

Theorem 1 ([3]). Turing machine obfuscators (in the sense of Definition 1)
do not exist.

The key idea of the proof is as follows. For strings α, β ∈ {0, 1}n define the TMs
Cα,β , Dα,β, Zn. On every input x a TM Cα,β always terminates within 10|x|
steps; it outputs β if x = α and 0n otherwise. A TM Dα,β considers an input x
as the code of some TM M , executes M(α) for poly(n) steps, and outputs 1 if
M(α) = β and 0 otherwise. A TM Zn always outputs 0n. Let M0#M1 denotes
a TM which takes the pairs (δ, x), δ ∈ {0, 1} as inputs and operates on x as
M0 if δ = 0 and as M1 if δ = 1. Clearly, it is possible to distinguish efficiently
O(Cα,β#Dα,β) from O(Zn#Dα,β) with probability 1. To this end, given a TM
M on input, an adversary A first decomposes M into M0#M1 and then outputs
M1(M0). On the other hand, for every PPT S the outputs SCα,β#Dα,β (x) and
SZn#Dα,β (x) will be the same with a high enough probability.

Remark 1. Programs that are obfuscatable in the sense of Definition 1 always
exist. Clearly, if on every input x a TM M attaches its program to the out-
put, i.e. M(x) = (y, “M”), then (1) holds trivially for any semantic-preserving
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transformation O. Note, that in this case we deal with a learnable program (in
the sense of [28]). The question is whether there exists a class of unlearnable
programs which admits a total obfuscation.

Even before “virtual black box” concept of obfuscation emerged in [3], Canetti
[5] and Canetti et al. [6] essentially obfuscated point functions under various
computational assumptions. A point funtion Iα(x) is evaluted to 1 if x = α and
to 0 otherwise. In [24] it was shown that a total obfuscation is possible in the
random oracle model for programs computing point and multi-point functions.
The problem of total obfuscation of point functions was also studied by Wee
in [32]. In this paper it was shown that an efficient obfuscation for the family
of point functions with multi-bit output is possible in the standard model of
computation provided that some very strong one-way permutations exist. Using
the construction from [6] Dodis and Smith demonstrated in [16] how to obfuscate
proximity queries where points are selected at random from a distribution with
min-entropy.

For the most applications of program obfuscation in cryptography (including
the converting of private-key encryption algorithms into public-key cryptosys-
tems, the designing of homomorphic public-key cryptosystems, etc.) the “virtual
black box” security paradigm is crucial. Another particularly challenging poten-
tial application is the removing of random oracles from cryptographic schemes.
Note, however, that in this case obfuscation is not completely total. Adversary
knows a priori that random oracle has to compute some function from, say,
{0, 1}2n to {0, 1}n which looks random. Therefore, the method of constructing
counterexamples to secure obfuscation suggested by Barak et al. [3] does not
work in the case being considered. This method is based on asking the adver-
sary to guess whether the function computed by obfuscated program is constant.
For random oracles the answer is always “no”. This means that at least when
application in removing random oracles is concerned, security requirements to
obfuscation are weaker and impossibility results of [3] do not rule out such an
application. However, the most obvious approach to this problem, namely one
based on obfuscating pseudorandom function families does not work yet (see [3]).

3.2 “Grey Box” Model

Since an adversary having access to an obfuscated program can always obtain
not only input-output pairs but also the corresponding traces one could first pose
a problem of whether it is possible to transform a program in such a way that
these traces are essentially the only useful information available to an adversary.
If this were possible then the next problem is how one can guarantee that the
traces themselves give away no useful information.

To this end we modify the “virtual black box” obfuscation model. Definition of
this new brand of obfuscation which from now on we will call “virtual grey box”
obfuscation differs from Definition 1 in two aspects. The first is the specification
of the oracle (“black-box”) used by simulating machine S. When the machine
S issues query x to the oracle it gets as a response not only the output word
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y but also the trace of execution of M on input x. Note that in our setting it
makes difference which particular program equivalent to M is used by the oracle.
We insist that this is just the original program M . This means that we do not
require obfuscator to hide any property that is learnable efficiently from traces
of execution of TM M . Notice also that any obfuscator can be deemed secure
only if it does not reveal any properties that remain hidden given access to the
traces of original program.

The second aspect concerns the programs to be obfuscated. We consider so
called reactive programs. Unlike ordinary programs intended for computing some
input-output relation, reactive programs are intended to interact with the envi-
ronment. This interaction displays itself in the responses a reactive program com-
putes on the requests from the environment. Thus, a reactive program computes a
function which maps the infinite sequences of inputs x1, x2, . . . , xn, . . . (sequences
of requests) into the infinite sequences of outputs y1, y2, . . . , yn, . . . (sequences of
replies) so that every output yn depends on the inputs x1, x2, . . . , xn only. Ex-
amples of reactive programs may be found in network protocols (including cryp-
tographic ones), embedded systems, operating systems, etc. A reactive program
may be formalized as a conventional TM which operates on read-only input tape
and write-only output tape (and using some auxiliary tapes) in such a way that
it does not proceed to read next input word xn+1 until it completes writing the
output yn. We will denote these machines as RTM to distinguish them from the
ordinary TM. It should be noticed that every TM may be viewed as an RTM
which resets its control into some predefined initial state s0 and erases its auxil-
iary tapes every time before reading the next input xn.

To distinguish the oracle used in Definition 1 from the oracle provided to
simulating machine S in this new setting we denote the latter by Tr(M). On
input x this oracle outputs a pair (y, trM (x)), where y is the output of RTM M
on input x (note that y depends not only on x but also on all previous inputs that
have been used as requests to the oracle) and trM (x) is the trace of execution
of M on this input. The string trM is defined as concatenation of all successive
instructions executed by M when running on input x.

Definition 2. A probabilistic algorithm O is a “virtual grey box” RTM obfus-
cator if it complies with the following requirements:

1. For every RTM M any output O(M) of O on input M describes a RTM
that is equivalent to M in the following sense: for any sequence of inputs
x1, . . . , xn, . . . the corresponding sequences of outputs of RTMs O(M) and
M coincide.

2. The description length and running time (on every finite sequence of inputs
x1, x2, . . . , xn) of any RTM O(M) are at most polynomially larger than that
of M .

3. For any PPT A (adversary) there is a PPT S (simulator) and a negligible
function ν such that

|Pr{A(O(M)) = 1} − Pr{STr(M)(1|M|) = 1}| = ν(|M |). (2)

holds for all RTMs M .
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Theorem 2. If one-way functions exist then “virtual grey box” RTM obfusca-
tors do not exist.

The intuition behind proof is quite simple. Barak et al. [3] proved Theorem 1 by
constructing an infinite family of TMs such that certain predicate π(M) defined
on this family is unlearnable with oracle access to the function computed by M
but can be decided easily given a text of any program equivalent to M . It suffices
to modify this construction in such a way that the following two requirements
hold simultaneously. First, learnability of predicate π(M) given a text of any
program equivalent to M should be preserved. Second, traces of execution of
M must provide a simulator with no additional useful information as compared
to the output-only oracle treated by Definition 1. A simulator S having access
to traces of execution of M is apparently more powerful then one bounded to
see input-output pairs only. To defeat this powerful simulator we make use of
cryptographic tools. Namely, instead of comparing input x to the fixed string α
as in Barak et al [3] we test first whether f(x) = f(α), where f is a one-way
function. Only if this test passes we check whether x = α.

A typical trace trM (x) consists of instructions used to compute f(x) and to
check whether f(x) = f(α). Most of the time this check fails. Moreover, if the
equality f(x) = f(α) holds with nonnegligible probability then this contradicts
the fact that f is a one-way function.

Note that one cannot replace one-way function f in this construction by e.g.
encryption function of private-key cryptosystem since encryption algorithm uses
private key and traces of its execution become available to adversary.

We stress that the above discussion has to be considered as motivating. The
actual construction is somewhat more complicated. Now we turn to the formal
proof.

Proof. The counterexample of Barak et al. from [3] involves two families of TMs.
For any pair of strings α, β ∈ {0, 1}n Turing machine C′

α,β(x) outputs β if x = α
and 0n otherwise. For the same parameters α, β Turing machineD′

α,β(C) outputs
1 if C(α) = β and 0 otherwise.

Let {f : {0, 1}n → {0, 1}n}n be a one-way function. Our construction depends
also on integer parameter t ≥ 2 which can be e.g. a constant or a value of
arbitrary but fixed polynomial (in n).

First we choose 2t strings α1, . . . , αt, β1, . . . , βt ∈ {0, 1}n uniformly at random.
Denote this 2t-tuple by γ. Now define RTM Cγ(x) as follows. On input x this
RTM computes f(x) and tests the result against precomputed values f(αi),
i = 1, . . . , t. If f(x) �= f(αi) for all i = 1, . . . , t then Cγ outputs 0n and halts.
In the case when f(x) = f(αi) for some i, Cγ checks whether x = αi and if so
outputs βi, otherwise it outputs 0n and in either case halts.

Next we define RTM Dγ . It stores two arrays of strings α1, . . . , αt and
β1, . . . , βt. Let i be a pointer to both this arrays which is initially set to 0.

On input a RTM C, Dγ runs as follows.

1. Check whether i = t− 1. If so, output 0 and halt.
2. Advance the pointer i = i+ 1 and then feed C with input αi.
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3. If C(αi) = βi then check the current value of the pointer. If i = t then output
1 and halt, else goto 2.

4. If C(αi) �= βi then output 0 and halt.

Note that simulating machine having access to Cγ and Dγ as oracles may
query Dγ with arbitrary RTM C and extract α1 from the trace, then query Cγ

with α1 and obtain β1 (even if we have a modified RTM Dγ that hides the values
βi) and so on. Therefore simulating machine is granted only t− 1 queries to Dγ

(in fact further queries are allowed but result invariably in zero responses and
thus can be ignored). The unobfuscatable property is the existence of t distinct
strings α1, . . . , αt ∈ {0, 1}n such that output of a given RTM on each of them is
nonzero.

Pair of RTMs (Cγ , Dγ) replaces TMs (C′
α,β , D

′
α,β) used in the proof of Theo-

rem 1 presented in [3]. Analysis of this proof shows that to adopt it to our case
one needs only to prove the next claim.

Claim: Suppose that RTM Zγ differs from Cγ only in that on input αt it outputs
0n. Then for any PPT S the amount

|Pr{SCγ ,Dγ (1n) = 1} − Pr{SZγ ,Dγ (1n) = 1}|

is negligible. The probabilities are taken over uniform choice of α1, . . . , αt,
β1, . . . , βt in {0, 1}n and coin tosses of S.

Proof. (Sketch) It suffices to show that any PPT has only negligible probability
to get nonzero response to any of its oracle queries, no matter which RTM, Cγ

or Zγ , is used as the first oracle.
For the sake of simplicity we assume t = 2 for the rest of proof. In this case

machine S can issue unique query to the second oracle. Let a1, . . . , as ∈ {0, 1}n

be all the queries of S to the first oracle prior to issuing its only query to the
second one (in fact s is a random variable). Suppose that nonzero string appears
with nonnegligible probability among responses to these s queries. We construct
a PPT T inverting the function f .

Let z ∈R {0, 1}n and y = f(z) be input to T . Machine T flips a coin and
decides which of values, f(α1) or f(α2) will be set to y. Without loss of generality
let it be α1. Then T chooses α2, β1, β2 ∈ {0, 1}n uniformly at random and calls S
as a subroutine. All queries to the first oracle are intercepted by T . For a query
x ∈ {0, 1}n, T computes f(x) and checks whether f(x) = y or f(x) = f(α2). If
neither of these equalities holds, T outputs 0n. In the case f(x) = y, T outputs
β1, and in the case f(x) = f(α2) it proceeds in the same way as RTM Cγ does.

The crucial observation is that the probability of seeing a nonzero response
from this simulated oracle T is at least as high as in the case of real oracle.
Therefore for some j ∈ 1, . . . s the response of T is nonzero with nonnegligible
probability. For this j, αj is in the preimage of y with probability 1/2. Thus,
T inverts f with nonnegligible probability which contradicts the fact that f is
one-way function.
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If nonzero string appears among responses to the first s queries with negligible
probability then the probability of nonzero response to a unique query of S to
the second oracle is negligible as well.

For the remaining oracle queries (after the query to the second oracle) the
same argument as above shows that nonnegligible probability of success would
imply existence of efficient algorithm for inverting the function f . This contra-
diction proves the claim. ��
As it may be seen from the proof, we lean to a large measure upon the ability of
an RTM to keep in memory a “history” of its computation on previous inputs.
This makes such programs non-resettable. It is unclear yet, whether this theorem
can be extended to ordinary TMs. This remains as an open question.

4 Obfuscation for Software Protection

As the most apparent application of obfuscation for software protection consider
the following scenario. Suppose one party invents a fast algorithm for factoring
integers and wishes to sell to another party a program for breaking the RSA cryp-
tosystem. The goal is to have this program transformed in such a way that it will
be hard to derive factorization algorithm from the text of transformed program.
However, the “black box” obfuscation model underlying Definition 1 does not
seem to be well-suited for this application. Indeed, it is hardly possible to find
a client who will buy a black-box as a piece of software. Instead, any program
product on the market must have a user guide specifying its functionality. In this
setting an adversary knows the function computed by the program in question.
The aim of obfuscation in this case is not to hide any property of the program
which refers to its functionality (we may assume that such properties are known
to an adversary party in advance from, say, users manual of the program), but
to make unintelligible the implementation of these functional properties in a
particular program. We think that this view of obfuscation is more adequate for
the needs of software engineering community than total obfuscation. The most
straightforward way to formalize this concept is to fix some program M0 equiv-
alent to the original program M and give M0 to the adversary as an additional
input. For example, if M is a program totally breaking the RSA cryptosystem,
i.e. finding its private key given a public one, then M0 might be an easy-to-
understand program which accomplishes the same task by exhaustive search.

The simulating machine S guaranteed by Definition 1 also has access to the
text of the program M0. The modified Definition 3 is as follows.

Definition 3. A probabilistic algorithm O is a software protecting obfuscator
if it complies with functionality and polynomial slow-down requirements from
Definition 1, and with the following security requirement:

3) For any PPT A there is a PPT S such that

|Pr{A(O(M), M̃) = 1} − Pr{SM (1|M|, M̃) = 1}| = neg(|M |). (3)

holds for every pair of TMs (M, M̃), where M ≈ M̃ , and |M̃ | = poly(|M |).
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The machines A and S are polynomial in the lengths of their first inputs, O(M)
and 1|M| respectively. Note that in the case when algorithm M̃ is efficient sim-
ulating machine S needs no access to the oracle M .

Remark 2. Some program properties (predicates) P are invariant under equiv-
alent program transformations, i.e. P (M) = P (M ′) holds for any program M ′

functionally equivalent to M . Clearly, such properties are only trivially obfus-
catable. Note, however, that in the context of software protection it is useless to
obfuscate invariant properties as soon as functionality of a program is known.

Security requirement in Definition 3 is much different from that in total obfus-
cation. The negative results of [3] do not rule out the possibility of “black box”
secure obfuscation for many important general classes of machines. Consider
as an example the obfuscation problem for deterministic finite state automata
(DFA). Secure total obfuscation of DFAs still remains one of the most chal-
lenging problem in the theory of program obfuscation. But if one manages to
estimate the obfuscation security following Definition 3 then a surprisingly sim-
ple obfuscation of DFAs can be obtained.

Theorem 3. There exists a secure software protecting obfuscator for the family
of DFAs.

Proof. A DFA is but a one-way TM. We may regard any efficient DFA minimiz-
ing algorithm O as a TM obfuscator. Indeed, it is well known that for every DFA
M there exists the unique minimal DFA M0 such that M ≈ M0. Therefore, a
simulator S, given a TM M̃ only, can readily compute O(M) by applying any
efficient minimizing algorithm to M̃ and then mimic an adversary A on the pair
(M, M̃) to satisfy (3). ��

The possibility of such effect has been noted in [3] and also studied in more
details in [19]. It appears in software engineering as well: if a program compilation
includes an advanced optimization (minimization) then executables become far
less intelligible by means of reverse engineering. As it can be seen from Definition
3, software protecting obfuscators are intended to remove all individual specific
features from a program to be protected. Hence, to obfuscate a program it is
sufficient to reduce it to some normal form. If a family of programs H admits
strong and effective normalization, i. e. there exists an algorithm which reduces
any two equivalent programs to the same normal form, then Theorem 3 can
be extended to this family: any efficient normalization algorithm becomes an
obfuscator O for programs from H. It is worth noting that the authors of [31]
implemented a sort of normalization, namely, flattening of program control flow,
as the basic obfuscating transformation in their software protection toolkit.

Unfortunately, efficient normalization is possible only for a few natural classes
of programs. Therefore, we qualify TM obfuscation through normalization as
trivial and pose the following question:

Open problem. Is there any class of programs which admits non-trivial secure
obfuscation in the sense of Definition 3?
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Another distinctive feature of TM obfuscation is that impossibility results
of Barak et al. [3] do not apply in this setting. Moreover, if one attempts to
extend the proof technique of the paper [3] to show that secure obfuscation in
the sense of Definition 3 is impossible, then this will immediately imply that
some weak form of obfuscation does exist! Indeed, counterexample of Barak et
al. is based on a specific invariant property of a particular family of programs.
Suppose there exists an infinite sequence of pairs (M, M̃) of TMs such that some
invariant property π is learnable efficiently given the text of the program O(M)
but is unlearnable when we have the text of the program M̃ and black-box access
to M . But this means that M̃ is a (provably) secure obfuscation of O(M) with
respect to the property π.

It makes sense to juxtapose the notion of TM obfuscation (Definition 3) with
the notion of obfuscation w.r.t. auxiliary inputs introduced in the paper [18].
Goldwasser and Kalai modified the “virtual black box” property by admitting
both an adversary A and a simulator S an access to an auxiliary input z which
may be dependent as well as independent from a program to be obfuscated.
When being adapted to TM notation it is as follows.

Definition 4 ([18]). A probabilistic algorithm O is an obfuscator w.r.t. depen-
dent auxiliary input for the family of TM F if it complies with functionality
and polynomial slow-down requirements from Definition 1, and with the follow-
ing security requirement:

3) For any PPT A there is a PPT S such that

|Pr{A[O(M), z] = 1} − Pr{SM [1|M|, z] = 1} = neg(|M |)
holds for every TM M ∈ F , and every auxiliary input z of size poly(|M |) (z
may depend on M).

In [18] it was shown that many natural classes of functions (so called filter
functions based on circuits with super-polynomial pseudo entropy on inputs
from NP-complete language) cannot be obfuscated. The security requirement in
the sense of Definition 3 is much weaker than that from [18] since in the case of
TM obfuscation we are bound to check (3) only for those auxiliary inputs that
are TMs M̃ equivalent to an obfuscated TM M . Therefore, negative results and
examples of [18] cannot testify the impossibility of universal software protecting
obfuscation, and we may pose the following question.

Open problem. Does there exist a class of programs that are unobfuscatable
in the sense of Definition 3?

Software protecting obfuscation has much in common with best possible ob-
fuscation advanced by Goldwasser and Rothblum in [19]. An obfuscator O is
judged as best possible if it transforms any program so that anything that can
be computed given an access to the obfuscated program O(M) should also be
computable from any other equivalent program (of some related size).

Definition 5 ([19]). A probabilistic algorithm O is a best possible obfuscator
if it complies with functionality and polynomial slow-down requirements from
Definition 1, and with the following security requirement:
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3) For any PPT A (learner) there is a PPT S (simulator) such that for every
pair of equivalent TMs (M, M̃) of the same large enough size the distributions
A(O(M)) and S(M̃) are indistinguishable.

The aim of software protection is to hide all specific properties of any partic-
ular implementation M of some function known to all (the latter is formalized
by giving an adversery a description of this function as an arbitrary program
M̃ equivalent to M). Intuitively, this may be achieved iff for every pair of im-
plementations M1 and M2 of the same function the distributions O(M1) and
O(M2) are indistinguishable. But, as it was proved in [19], this is equivalent (in
the case of efficient O) to the claim that O is a best possible obfuscator. Thus,
it may be conjectured that software protection obfuscation is equivalent to best
possible obfuscation. But to prove this conjecture formally one has to elaborate
Definitions 3 and 5 to circumvent the discrepancy in the admissible size of an
auxiliary program M̃ .

5 Constant Hiding

In this setting everything to be hidden from an adversary is a certain constant
c0 used by a program M . This constant is assumed to be chosen randomly in
sufficiently large set C. One can safely assume that the original program M is
completely known to the adversary except for the constant c0.

It is easy to see that constant hiding is closely related with obfuscation for
software protection. Therefore we adopt Definition 3 to the present case by
setting M̃ to be the same TM as M except for the constant c0 replaced by a
constant c chosen randomly and independently in C. Let M be a program which
uses a constant c. For simplicity we assume that c ∈R {0, 1}n for every integer
n. For any given constant value c ∈ {0, 1}n we denote by Mc the corresponding
instantiation of the program M . Thus, we deal with a parameterized family of
programs F = {Mc : c ∈ {0, 1}n, n ≥ 1}. The obfuscation of F is intended to
prevent the extraction of information about a constant c from the program Mc.

Definition 6. Let F be a parameterized family of TMs Mc. A probabilistic al-
gorithm O is a constant hiding obfuscator for the family F if it complies with
functionality and polynomial slow-down requirements from Definition 1, and
with the following security requirement:

3) For any PPT A there is a PPT S such that

|Pr{A[O(Mc0),Mc] = 1} − Pr{SMc0 [1|Mc0 |,Mc] = 1} = neg(n) (4)

holds for any constant value c0 ∈ {0, 1}n and c ∈R {0, 1}n.

One can define a weak form of constant hiding in which an adversary A and
a simulating machine S instead of outputting a single bit have to guess the
constant c0.
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Remark 3. Suppose that U is a universal TM. Then a constant c may be inter-
preted as an encoded description of some other TM M simulated by the instan-
tiation Uc. In this case a constant hiding obfuscator for a universal TM is some
specific variant of obfuscation w.r.t. dependent auxiliary input introduced in [18]
(see Definition 4). At the same time, if all TMs Mc from the family F do not
refer to a constant c along any execution then every semantic-preserving trans-
formation O is a trivial constant hiding obfuscator for F . Nontrivial constant
hiding does exist (at least in the weak form) under cryptographic assumptions
for certain restricted classes of programs. In fact, any public-key cryptosystem
gives such an example since its encryption program can be regarded as hiding a
particular constant, namely, a private key. The obfuscations of point functions
from [24,32] can be also viewed as constant hiding obfuscations (see also [18]).

Yet another variant of constant hiding obfuscation is defined in [22]. An obfusca-
tor O for a family of programs F is regarded as a composition of two algorithms:
a key transformation routine T that takes a key c and returns an obfuscated key
c′ = T (c), and a polynomial time machine G which on input an obfuscated key
c′ and x outputs y = Mc(x). The authors of [22] proved that if a secure secrete-
key encryption scheme can be obfuscated according to their definition, then the
result is a secure public-key encryption scheme. On the other hand, they also
showed that there exists a secure probabilistic secret-key cryptosystem that can-
not be obfuscated. Definition 6 specifies a more general model of constant hiding
obfuscation than that of [22], since in our model it is assumed that obfuscating
transformations may be applied not only to a constant c0 to be hidden but also
to the program Mc0 which is instantiated by the constant. Instead of using some
fixed universal machine G we grant an adversary an access to a typical program
Mc, since all TM from the family F are the same except for the constants.

6 Predicate Obfuscation

This is one of the weakest model of obfuscation. It is intended to hide only a par-
ticular distinguished property of a program (predicate). Nevertheless, predicate
obfuscation may appear in numerous applications in computer security. Assume
that some programs are infected with a virus which is triggered off at some exe-
cutions. There are several approaches to a virus detection. A sandbox approach
emulates the operating system, runs executables in this simulation and analyzes
the sandbox for any changes which might indicate a virus. This approach is
resource consuming and normally it takes place only during on-demand scans.
The most effective virus detection technique is based on virus dictionary: an anti-
virus program tries to find virus-patterns inside ordinary programs by scanning
them for so-called virus signatures. To avoid detection some viruses attempt to
hide their signatures by using complex obfuscating transformations and rewrit-
ing their bodies completely each time they are to infect new executables. Also
the viruses tend to “weave” their code into the host program making detection
by traditional heuristics almost impossible since the virus share a great deal of
its instructions with a host program code. A virus-detection problem may be
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specified by a predicate π(M) which evaluates to true whenever the program
M includes some malware piece of code. An obfuscating transformation O used
by a metamorphic malware could be regarded secure if any anti-virus scanner is
no more effective in detecting an obfuscated virus signature (i.e. in evaluating
π(O(M))) than some sandbox virus detector.

To formalize this idea consider some predicate P defined on a family of
TMs F .

Definition 7. A probabilistic algorithm O is an obfuscator of the predicate π
on the family F if it complies with functionality and polynomial slow-down
requirements from Definition 1, and with the following security requirement:

3) For any PPT A there is a PPT S such that

|Pr{A[O(M)] = π(M)} − Pr{SM [1|M|] = π(M)}| = neg(|M |) (5)

holds for every TM M from F and its obfuscation O(M).

Predicate obfuscation is related intrinsically with total obfuscation: a “virtual
black box” obfuscator needs to hide all predicates, whereas Definition 7 allows
to build different obfuscators for different predicates. As it may be seen from the
proof of Theorem 1 given in [3], the impossibility of total obfuscation is certified
by presenting an unobfuscatable predicate as a counterexample. On the other
hand, predicate obfuscation is much weaker than total obfuscation. In [29] it was
shown that if every TM from a family F computes either zero function, or a point
function, then secure obfuscation of the predicate “M(x) �≡ 0” on the family F is
possible under assumption that a one-way permutation exists. This obfuscation
is based on the hard-core predicate construction suggested by Goldreich and
Levin [17]. As it can be seen from theorem below, predicate obfuscation offers
some nice properties: composition of predicate obfuscators increases the potency
of obfuscation.

We say that a predicate π on TMs is a functional property if π(M1) = π(M2)
holds for every pair of equivalent TMs M1,M2.

Theorem 4. Let O1 and O2 be obfuscator of functional properties π1 and π2,
respectively. Suppose also that the range of O2 is contained in the domain of O1.
Then the composition Ô = O1O2 is an obfuscator of both predicates π1 and π2.

Proof. We may assume that each obfuscator Oi, i = 1, 2, is supplied with a
polynomial qi(·), and for every TM M the size of Oi(M) is exactly qi(|M |). This
may be achieved by padding an obfuscated program with a sufficient amount
of dummy instructions. Clearly, Ô satisfies the functionality and polynomial
slow-down requirements.

Let M be an arbitrary TM.
1. To show that Ô obfuscates π1 consider an arbitrary adversary Â. Since O1 is
an obfuscator of π1, there exists a PPT S such that

|Pr{Â[O1(O2(M))] = π1(O2(M))}−Pr{SO2(M)[1|O2(M)|] = π1(O2(M))}| = neg(|M |)
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holds for the predicate π1, TM O2(M) and its obfuscation O1(O2(M)). Now
we may consider a simulator Ŝ which operates as follows: given an input 1x,
it computes y = q2(x), and applies the simulator S to 1y. Since π1(O2(M)) =
π1(M) and O2(M) ≈M , we arrive at the equation

|Pr{Â[Ô(M)] = π1(M)} − Pr{ŜM [1|M|] = π1(M)}| = neg(|M |),

which is exactly the security requirement for π1, TM M and its obfuscation
Ô(M). Hence, Ô obfuscates π1.

2. To show that Ô obfuscates π2 consider an arbitrary adversary Â and the
composition A = ÂO1. Since O2 is an obfuscator of π2, there exists a PPT Ŝ
which simulates the adversary A so that

|Pr{A[O2(M)] = π2(M)} − Pr{SM [1|M|] = π2(M)}| = neg(|M |)

holds. Hence, Ô satisfies security requirement to predicate obfuscation
for π2. ��

7 Conclusion

The models of program obfuscation presented in this paper evolved naturally
from the “black box” simulation principle offered by Barak et al. in [3]. Security
requirements given in Definitions 3, 6, and 7 make it possible to cover those cases
of program obfuscation that do not fall into the “virtual black box” security
paradigm. Although we have made only preliminary study of these new models,
even such simple results as Theorems 3 and 4 show that as security requirements
become weaker program obfuscation displays some new interesting features. On
the other hand, Theorem 2 demonstrates that total program obfuscation remains
impossible even in a framework of a weak “virtual grey box” obfuscation model
under standard cryptographic assumptions.
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Abstract. An obfuscation aims to transform a program, without affect-
ing the functionality, so that some secret information within the program
can be hidden for as long as possible from an adversary. Proving that an
obfuscating transform is correct (i.e. it preserves functionality) is con-
sidered to be a challenging task.

In this paper we show how data refinement can be used to specify im-
perative data obfuscations. An advantage of this approach is that we can
establish a framework in which we can prove the correctness of our obfus-
cations. We demonstrate our framework by considering some examples
from obfuscation literature. We show how to specify these obfuscations,
prove that they are correct and produce generalisations.

Keywords: Data Obfuscation, Refinement, Specification, Correctness.

1 Introduction

Skype’s internet telephony client [2], SDC Java DRM (according to [11]), and
most software license-control systems rely heavily on obfuscation for their se-
curity. After the landmark proof of Barak et al. [1], there seems little hope of
designing a perfectly-secure software black-box, for any broad class of programs.
To date, no one has devised an alternative to Barak’s model, in which we would
be able to derive proofs of security for systems of practical interest. These the-
oretical difficulties do not lessen practical interest in obfuscation, nor should it
prevent us from placing appropriate levels of reliance on obfuscated systems in
cases where the alternative of a hardware black-box is infeasible or uneconomic.

In this paper we define obfuscation as a heuristic method whose objective is
to transform a program, without affecting relevant aspects of its functionality,
in such a way that some secret information in the program can be preserved as
long as possible from some set of adversaries. The second clause in our objective
implies that theoretical study of the effectiveness of an obfuscation will be impos-
sible until we have a validated, and theoretically-tractable, model of adversarial
attack. The first clause is, by contrast, an appropriate domain for theoretical
study. We expect our compilers to accurately preserve program semantics when
they transform our source codes into object codes. We have a similar expectation
of obfuscating compilers and object-code obfuscators. Theoretical study of the
correctness of obfuscating systems is as yet in its infancy. In this paper we de-
scribe a promising approach for specifying obfuscating transforms for imperative
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c© Springer-Verlag Berlin Heidelberg 2007



300 S. Drape, C. Thomborson, and A. Majumdar

languages. Our approach allows us to establish a framework for the proving the
correctness of data obfuscations which we illustrate by constructing correctness
proofs for some examples from [3] and [8] which were stated without proof.

In [7] obfuscation is considered to be data refinement [6] and obfuscations for
abstract data-types were developed using a functional language (Haskell [10]).
In this paper we extend the data refinement approach to imperative data obfus-
cations. We will consider programs consisting of assignments, conditionals and
loops and we model these statements as functions that change the state. Thus
we will be able to specify data obfuscations as functional refinements. As a con-
sequence, we find that not only can we prove the correctness of all our data
obfuscations but we can also specify more general obfuscations and study the
effects of composing different obfuscating transforms. Thus our approach may
someday be used as a method for generating obfuscated programs.

As stated earlier an obfuscation should preserve some secret information but
what do we mean by this? In [7] a function (operation) was said to be obfuscated
if it is harder to prove properties (i.e. assertions) about the function. Thus, in
that case, the goal of obfuscation was to keep a set of assertions secret. It is
beyond the scope of this paper to develop this notion for imperative programs
— however we would expect that it is harder to prove assertions about a data
obfuscated program if, for instance, it has more variables (that are not just
dummy or temporary variables) or that the expressions that are used to compute
values of variables are more complicated.

2 Creating a Specification Framework

In this section we show how to specify imperative data obfuscations as data
refinements by modelling imperative statements as functions on the state.

2.1 Modelling Statements as Functions

We define a statement to be a function on states: Statement :: State → State
where a state is defined to be a set of mappings from variables to values (or
expressions computing values). We assume that the variables are integer val-
ued and any expressions consist of arbitrary-precision arithmetic operators. We
concentrate on code fragments with no methods, exceptions or pointers.

Suppose that we have a set of states S. For some initial state σ0 ∈ S and
some statement T , the effect of statement T on σ0 is to produce a new state
σ1 ∈ S such that σ1 = T (σ0). Suppose that we have a sequential composition (;)
of statements, which we will call a block, B = T1;T2; . . . ;Tn. If the initial state
is σ0 then the final state σn is given by

σn = B(σ0) = Tn (. . . T2 (T1 (σ0)) . . .)

For our simple language, we consider the following statement types: skip, assign-
ments (var := expr), conditionals (if pred then statements else statements)
and loops (while pred do statements).
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The statement skip does not change the state and so if S ≡ skip then S(σ0) =
σ0. For an assignment A of the form A ≡ x := e, if the initial state contains the
mapping x #→ x0 then the state after the assignment will have a mapping x #→ e.
Note that if the expression e is a function of x, say f(x), then the mapping
x #→ x0 will be replaced by the mapping x #→ f(x0). As an alternative, if x #→ x0
is the initial mapping for x then we can write

A(σ0) = σ0 ⊕ {x #→ e[x0/x]}

using functional overriding (⊕) and substitution (/).
A conditional statement C has the form C ≡ if p then T else E where p is

a predicate with type p :: State → B and T and E are blocks. Then for some
initial state σ0 we have that

C(σ0) =
{
T (σ0) if p(σ0)
E(σ0) otherwise

A loop statement L has the form L ≡ while p do T where p is a predicate
and T is a block. Then for some initial state σ0 we have that

L(σ0) = T i(σ0) where i = min{i :: N | p (T i(σ0)) = False}

Note that this minimum does not exist if the loop fails to terminate.

2.2 Using Refinement

The obfuscations that we will consider in this paper are data obfuscations and we
will suppose that such an obfuscation will act on a state σ to produce a new state
O(σ). Thus we can consider the set of states S to be obfuscated to produce a
new set of states O(S). To specify a data obfuscationO we will supply a function
cf :: State→ State which we call the conversion function which satisfies

cf(σ) = σ′ ⇒ σ ∈ S ∧ σ′ ∈ O(S)

Note that the type of the conversion function is the same as the type of a
statement and so cf usually takes the form of an assignment.

For a (functional) refinement we require an abstraction function af with type
af :: State → State which maps a state from O(S) to a state from S and is
a post sequential inverse for cf (i.e. cf ; af ≡ skip). As well as an abstraction
function, for refinement, we need an invariant I on the obfuscated state such
that for states σ ∈ S and O(σ) ∈ O(S)

σ � O(σ) ⇔ (σ = af(O(σ))) ∧ I(O(σ)) (1)

Note that for most of our transformations unless otherwise stated I ≡ True.
The expression “σ � O(σ)” means that the state σ is obfuscated (refined) into
O(σ). Using the conversion function we have that cf(σ) = O(σ) ⇒ σ � O(σ).
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Suppose that we have a block B and we want to obfuscate it using data
refinement to obtain a block O(B) which preserves the correctness of B. We say
that O(B) is correct (with respect to B) under the obfuscation O if it satisfies

(∀σ ∈ S) • σ � O(σ) ⇒ B(σ) � O(B)(O(σ)) (2)

Using Equation (1) we obtain the following equation:

af ; B ≡ O(B); af (3)

By writing the abstraction function as a statement we can construct two blocks
af ;B and O(B); af and proving the equivalence of these blocks establishes that
O(B) is correct.

Since cf ; af ≡ skip an alternative correctness equation can be obtained by
pre-composing Equation (3) by cf :

B ≡ cf ; O(B); af (4)

If we also have that af ; cf ≡ skip then we can post compose Equation (3) by
cf to obtain

O(B) ≡ af ; B; cf (5)

In Appendix A we discuss in detail how to use these equations to construct
proofs of correctness for imperative obfuscations.

2.3 Obfuscating Statements

Suppose that we have a data obfuscation that changes a variable x using a
conversion function cf and abstraction function af satisfying cf ; af ≡ skip.
This means that af and cf are statements of the form

af ≡ x := G(x) cf ≡ x := F (x)

for some functions F and G.
Suppose we have an obfuscation for x (with cf and af defined as above) then

let us consider the statement P1 ≡ x := e where e is an expression that may
contain an occurrence of x. We have that:

O(x := e) ≡ x := F (e′) where e′ = e[G(x)/x] (6)

For example, the expression x := x+1 would be transformed to x := F (G(x)+1).
Note that the expression e[G(x)/x] denotes how a use of x is obfuscated.

Now let us suppose that P2 ≡ if p(x) then T else E for some predicate p
(which depends on a variable x) and blocks T and E. We propose that

O(P2) ≡ if p[G(x)/x] then {af ;T ; cf} else {af ;E; cf}

with af as above. Using Equation (3) we can show that O(P2); af ≡ af ; P2.



Specifying Imperative Data Obfuscations 303

Thus, since cf ; af ≡ skip (and using the definition of O) then

O(if p then T else E) ≡ if O(p) then O(T ) else O(E) (7)

Finally, suppose that P3 ≡ while p(x) do S then we propose that

O(P3) ≡ while p[G(x)/x] do {af ;S; cf}

with af as above. For the correctness of O(P3) we need to show that af ;P3 ≡
O(P3); af and so for the LHS of the identity we will need to “move” af . In
executing af ;P3 we will obtain a block of the form af ;Sn where n :: N. Since
cf ; af ≡ skip then

af ;Sn ≡ (af ;S; cf)n; af

To move af through the while loop we need to change the expression for the
guard. When af is before the loop we have an assignment to x and so this
assignment needs to put into the guard and so the guard becomes p[G(x)/x].
Now af ;S; cf is a refinement (obfuscation) of S with respect to af and so the
value of x is obfuscated while the loop is executed — thus the change to the
guard is correct as the predicate p will need the original value of x. Thus, since
cf ; af ≡ skip, we have shown that

af ; while p(x) do S ≡ while p[G(x)/x] do {af ;S; cf}; af (8)

Suppose that we want to obfuscate a sequential composition of blocks. Let B1

and B2 be two blocks of code and by using Equation (3) we can show that

O(B1; B2) ≡ O(B1); O(B2) (9)

So when applying a data obfuscation to a sequence of statements (blocks) we
can obfuscate each statement (block) individually and compose the results.

3 Variable Transformations

We now give some examples of data transformations that can be used to obfus-
cate variables.

3.1 Encoding

In [3] an obfuscation for variables called an encoding is given. A simple example
of an encoding for some variable x is x � α∗x+β where α and β are constants.
For this transformation we have the following refinement functions:

cf ≡ x := α ∗ x+ β af ≡ x := (x − β)/α

For exact arithmetic, we have that cf ; af ≡ skip ≡ af ; cf . The conversion and
abstraction functions are of the form of the functions used in Section 2.3 and so
we can use the equations given in that section for transforming statements.
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In [8], the following example was discussed:

P ≡ {i := 1; s := 0; while (i < 15) do {s := s+ i; i := i+ 1 } }

This example was then converted using the mapping i � 2 ∗ i to give:

O(P ) ≡ {i := 2; s := 0; while (i < 30) do {s := s+ (i/2); i := i+ 2 } }

This transformation was given without a proof of correctness. The refinement
functions for this obfuscation are:

cf ≡ i := 2 ∗ i af ≡ i := i/2

To prove that O(P ) is correct we use Equation (3) to show that: af ; P ≡
O(P ); af . This proof is given in Appendix A.3.

A more complicated variable transformation for x can be obtained by using
cf ≡ x := α ∗x+β ∗ y where α and β are constants and y is a program variable.

3.2 Variable Splitting

Another variable transformation mentioned in [3] is the concept of variable split-
ting. This is where a variable x (say) is represented by two or more new variables
so that the information contained in x is “split” across these new variables. For
an example transformation, we will split the integer variable x into two new
integers variables a and b such that a = x div 10 and b = x mod 10. We can
write the conversion and abstraction functions as follows:

af ≡ x := 10 ∗ a+ b cf ≡ {a := x div 10; b := x mod 10}

For this transformation we have the invariant I ≡ 0 ≤ b ≤ 9. This invariant
ensures that the definition of af is valid and if this invariant holds then cf ; af ≡
skip and af ; cf ≡ skip.

Under this transformation, the assignment x++ (i.e. x := x+ 1) becomes:

a := (10 ∗ a+ b + 1) div 10; b := (b + 1) mod 10

Note that ((10 ∗ a) + b+ 1) mod 10 ≡ (b+ 1) mod 10.
As an alternative, we propose that a correct transformation of S ≡ x++ is

O(S) ≡ if (b == 9) then {a := a+ 1; b := 0} else {b := b+ 1}

and this can be proved correct by showing that S ≡ cf ;O(S); af . The advantage
of the latter transformation is that it does not have traces of the abstraction and
conversion functions. The proof is given in Appendix A.4.

4 Array Transformations

Various array transformations are mentioned in [3] such as: Folding (1-D arrays
are transformed into n-D arrays), Flattening (n-D arrays are changed into 1-D
arrays), Splitting (one array is transformed into two or more arrays) and Merging
(two or more arrays are combined into one array).
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4.1 Changing Array Indices

Folding and flattening can be considered to be transformations that change an
array index — how can we specify these transformations? For example, suppose
that we have an array A of size n and an array R of size p×q (where p×q = n).
One way to convert between A and R is to use the transformation A[i] :=
R[i div q, i mod q] which has the inverse R[j, k] := A[j ∗ q + k].

How can we write a conversion function for this kind of transformation? We
need to consider how A[0], A[1], . . . , A[n−1] are all transformed. So we could give
a set of n transformations (one for each element of the array) but in a program
the index for an array is usually a variable (or an expression). Thus we need
to write an expression for A[j], where j ∈ [0..n), which shows how the array is
transformed. Note that this is not a variable transformation of j as j is merely
a dummy variable acting as a placeholder. When using such an expression at a
particular point we need to instantiate j with the expression for the array index.

If we want to transform the array A into the array R using an index change
function f then the conversion and abstraction functions are:

cf ≡ R[f(j)] := A[j] and af ≡ A[j] := R[f(j)]

Suppose that we want to transform the statement A[i] := A[i− 1] + 1. From
Equation (5) we have:

A[j] := R[f(j)]; A[i] := A[i− 1] + 1; R[f(j)] := A[j]

Using the proof techniques discussed in Appendix A we can reduce the set of
statements to:

R[f(i)] := R[f(i− 1)] + 1

4.2 Array Splitting

An array split aims to split an array A (of size n) into two new arrays P (of size
mp) and Q (of size mq). This idea was generalised in [8] as follows. For an array
split which uses two new arrays, we need three functions c (called the choice
function), fp and fq (these functions determine the positions of the elements in
each of the arrays). The types of the functions are as follows:

c :: [0..n)→ B fp :: [0..n)→ [0..mp) fq :: [0..n)→ [0..mq)

The relationship between A and P and Q is given by the following rule:

A[i] =
{
P [fp(i)] if c(i)
Q[fq(i)] otherwise

Note that we can only apply this transformation to statements that use A with
an index. For example, we could not easily transform statements which pass the
array A to other methods.
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In [3], an example array split was given in which one of the new arrays con-
tained the elements of A, in order, which had an even index and the other array
contained the rest of the elements. For this split, we can define

c = (λi.i% 2 == 0) fp = fq = (λi.i/2)

In [7], a program for producing Fibonacci numbers using arrays was obfuscated
using the example array split from [3]. For this obfuscation, the statement

S ≡ A[i] := A[i− 1] +A[i− 2] (10)

was transformed to:

if (i% 2 == 0) then P [i/2] := Q[(i− 1)/2] + P [(i− 2)/2]
else Q[i/2] := P [(i− 1)/2] +Q[(i− 2)/2] (11)

Is this transformation correct? Let us show how to derive a correct obfuscation
for the statement (10) using the generalised array split.

We can write a conversion function for the generalised array split as follows

cf ≡ if (c(j)) then P [fp(j)] := A[j] else Q[fq(j)] := A[j]

and so the abstraction function can be written as

af ≡ if (c(j)) then A[j] := P [fp(j)] else A[j] := Q[fq(j)]

We can show that cf ; af ≡ skip ≡ af ; cf . Note that when we use these functions
we will have to instantiate the index j to a particular value (or expression). To
derive a correct obfuscation for S (in Equation (10)) we can use Equation (5)
to compute af ;S; cf . A sketch of the derivation can be seen in Appendix A.5
which gives the general form for O(S) as:

if (c(i)) then {if (c(i− 1))
then {if (c(i− 2)) then P [fp(i)] := P [fp(i− 1)] + P [fp(i− 2)]

else P [fp(i)] := P [fp(i− 1)] +Q[fq(i− 2)]}
else {if (c(i− 2)) thenP [fp(i)] := Q[fq(i− 1)] + P [fp(i− 2)]

elseP [fp(i)] := Q[fq(i− 1)] +Q[fq(i− 2)]}}
else {if (c(i− 1)) then {if (c(i− 2))

then Q[fq(i)] := P [fp(i− 1)] + P [fp(i− 2)]
else Q[fq(i)] := P [fp(i− 1)] +Q[fq(i− 2)]}

else {if (c(i− 2))
thenQ[fq(i)] := Q[fq(i− 1)] + P [fp(i− 2)]
else Q[fq(i)] := Q[fq(i− 1)] +Q[fq(i− 2)]}}

We can simplify the expression for O(S) for this split by removing infeasible
paths. For example, when we have a statement of the form:

if (c(i)) then {if (c(i− 1)) then X else Y }
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then X cannot be reached since c = (λi.i% 2 == 0) and when c(i) is True then
c(i− 1) must be False. By removing all the infeasible paths and substituting the
functions c, fp and fq we obtain

if (i% 2 == 0) then P [i/2] := Q[(i− 1)/2] + P [(i− 2)/2]
else Q[i/2] := P [(i− 1)/2] +Q[(i− 2)/2]

Thus the transformation given in [7] was correct.

5 Applying Data Obfuscations

In the previous sections we have given examples of data obfuscations and in this
section we demonstrate some of the choices that we can make when applying
our data obfuscations.

5.1 Program Blocks

If we have a piece of code P ≡ B1;B2 (where B1 and B2 are blocks) and an
obfuscation O with conversion function cf and abstraction function af that
satisfy cf ; af ≡ skip ≡ af ; cf . Using Equations (5) and (9) we have two ways
to obfuscate P . Either we can obfuscate B1 and B2 separately and compose the
results or we can obfuscate both blocks together i.e.

O(P ) ≡ {af ;B1; cf}; {af ;B2; cf} or O(P ) ≡ af ; {B1;B2}; cf

The two obfuscations that we obtain are equivalent but they may look different.
In particular the second derivation may reduce the number of assignments.

For example, suppose that P ≡ {x := x+1; B; x := 3∗x} where B is a block
of code in which x does not occur and cf ≡ x := x + 2 and af ≡ x := x − 2. If
we obfuscate the two assignments separately then we have that

O(P ) ≡ {x := x+ 1; B; x := 3 ∗ x− 4}

However computing af ; P ; cf will give us the following set of simultaneous
equations (see Appendix A for more details how to compute this set):

x1 = x0 − 2; x2 = x1 + 1; B; x3 = 3 ∗ x2; x4 = x3 + 2 (12)

Reducing this set of equations (with x not occurring in B) gives us:

B; x4 = 3 ∗ (x0 − 1) + 2

Thus O(P ) ≡ {B; x := 3 ∗ x− 1}.
The two derivations produce equivalent programs but the second program only

has one assignment to x. From an obfuscation point of view, the first program
would appear to be better as it has more assignments to x and so it is (slightly)
harder to work out the value of x at the end of O(P ).
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Instead of completely reducing a set of simultaneous equations we can partially
reduce them. For instance for the set of equations in (12), we can substitute x1
and x3 to obtain:

O(P ) ≡ {x := x− 1; B; x := 3 ∗ x+ 2}

Thus we have some flexibility when deriving obfuscation for a sequence of state-
ments using a particular conversion function.

5.2 Combining Transformations

Since we are considering our obfuscations as functions we may naturally want to
compose obfuscations. For some variable x suppose that we have two obfusca-
tionsO1 andO2 with conversion functions cf1 ≡ x := f1(x) and cf2 ≡ x := f2(x)
and corresponding abstraction functions af1 ≡ x := g1(x) and af2 ≡ x := g2(x).
To obfuscate a statement S by applying O1 followed by O2 we have:

O2(O1(S)) ≡ af2; af1; S; cf1; cf2

This is equivalent to having a single obfuscation O1;2 with conversion function
cf1;2 ≡ x := (f2 · f1)(x) and abstraction function af1;2 ≡ x := (g1 · g2)(x). We
can define O1;2 ≡ O2 · O1.

For example, we can combine a variable transformation with an array obfus-
cation given in Section 4.1. For instance if we had the functions f :: Z → Z

and p :: [0..n) → [0..n) (with appropriate inverses) then a possible conversion
function is cf ≡ A[i] := f(A[p(i)]) in which f acts as a variable transformation
and p is an array index permutation.

6 Conclusion

In this paper we have extended work from [7] and considered imperative data
obfuscations as data refinements. By using functional refinement and modelling
statements as functions on the state we were able to prove the correctness of
imperative data obfuscations, including some of the data obfuscations from [3,8]
which were stated without proof. For data refinement we give functions (the
conversion and abstraction functions) describing the relationship between the
before and after states of a obfuscated variable. Using these functions we can
prove that a sequence of statements has been correctly obfuscated. Initially we
considered simple variable obfuscations and then we showed how to extend our
work to deal with more complicated obfuscations such as array transformations.
In Section 5 we saw that we often have a choice about how we can apply data
obfuscations such as using single statements vs. blocks of statements or reducing
a set of simultaneous equations differently. Thus, by applying a data obfuscation
to the same piece of code in different ways, we can produce different obfuscations.

Our purpose in this contribution has not been to propose new obfuscating
transforms but to show a way to specify and prove existing transforms. This, we



Specifying Imperative Data Obfuscations 309

believe, is an important step towards ensuring that the obfuscated program and
its unobfuscated counterpart are functionally equivalent (same I/O behaviour)
after the obfuscating transforms are applied. The simple program constructs
that we have targetted form the basis for all imperative languages and therefore
our method is generic enough to be applicable to a wider class of imperative
languages (we chose not to target language-specific constructs). An application
of using our framework for specifying and proving correctness of obfuscations can
been seen in design of slicing obfuscations [9], which are used to impede static
program analysis with a slicer (which can be used as a tool by an adversary to
reverse engineer programs [3]).

One drawback with our method for producing data obfuscations is that the
conversion and abstraction function can remain visible in the code. To prevent
this we can try to combine these functions with surrounding statements. Some-
times our obfuscations may need extra assignments, temporary variables and
extra computations. Thus we may have a trade-off between the efficiency and
the complexity of our obfuscations. We should ensure that our obfuscations do
not adversely affect the efficiency of our programs and so we may need to restrict
how complicated we make our obfuscations. Ways to do this has been shown in
[9]. Also, it would seem that an optimizing compiler will effectively strip out the
conversion and abstraction functions in the code if they are trivially analysable
by static analysis. We argue that this is not an immediate concern to us since
commercially distributable software will be obfuscated after the optimization
phase of the developer’s compiler.

We made various restrictions and an area for future work would be to see how
these restrictions could be removed. We used only arbitrary-precision arithmetic
but if we relaxed this restriction we may not be able to use obfuscations such
as x � α ∗ x + β since this may cause x to overflow and we may not be able
to construct an inverse (as it requires division). All the obfuscations that we
have considered have been data obfuscations but another class of obfuscations
is control flow obfuscations (for example, using predicates [4] and control flow
flattening [12]). Can control flow obfuscations be specified using refinement?
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A Proofs of Correctness

In the main part of the paper we gave a way of specifying imperative data ob-
fuscations. We now discuss how to use this specification to construct correctness
proofs for some of our example obfuscations.

A.1 Simultaneous Equations

Suppose that we obfuscate S to obtain O(S) where af and cf are the abstrac-
tion and conversion functions for the obfuscation. We can use Equation (4) to
prove that O(S) is a correct obfuscation of S by showing that the sequence of
statements cf ; O(S); af is equivalent to S. Suppose that we have an obfuscation
that transforms a variable x (say) then this proof could take the form:

x := f(x); x := u(x); x := g(x)

where f , g and u are functions. To simplify this expression we can substitute
values of x in sequential order by rewriting the sequence of statements as a set of
simultaneous equations. Each definition of a variable will have a different name
which is usually the name of the variable with a subscript (e.g. x2) and we will
use the convention that the initial value of a variable has a subscript 0. All the
uses of a variable are renamed to correspond to the appropriate assignment.
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The sequence above can be rewritten as the following set of equations:

x1 = f(x0); x2 = u(x1); x3 = g(x2)

To distinguish between programs and sets of equations, whenever we convert to
a set of simultaneous equation we will use the convention that the assignment
symbol := is replaced by equality =. By substituting the values for x1 and x2
we obtain the following:

x1 = f(x0); x2 = u(f(x0)); x3 = g(u(f(x0)))

We can remove the assignments for x1 and x2 as they are now redundant. So now
we have x3 = g(u(f(x0)) which corresponds to the statement x := g(u(f(x))).

This conversion from assignments to simultaneous equations is similar to con-
verting code to SSA (Static Single Assignment) form which is often used in
conjunction with compiler optimisations (for example, [5] gives details about
how to compute SSA form). In SSA form, each definition of a variable is given a
different name and each use is renamed according to the appropriate definition.
When there are different control flow paths, a special statement called a φ (phi)
function is added. However, as we are only aiming to simplify a set of simulta-
neous equations, we will not use the SSA form directly. In particular, our proofs
will not need to use phi functions as we will use the results of Section 2.3 to
enable us to deal with if and while separately and we can obfuscate a sequence
of statements by obfuscating the individual statements. We will only use the
SSA form as a guide to help us to specify a set of simultaneous equations which
we can manipulate and simplify.

A.2 Steps in a Proof

There are four main steps in constructing our proofs of correctness.
Simultaneous Equations. The first step is to convert a sequential program into
a set of simultaneous equations using the SSA form as a guide. This means that
each new definition of a variable has a unique subscript and each use of a variable
should refer to the last instance of the variable.
Substitution. Once we have converted our sequential code to a set of simultaneous
equations then the next phase is to reduce the set of equations by performing
substitutions and in particular we want to hide the occurrence of the conversion
and abstraction functions. However, sometimes problems can arise.

Suppose that we have the following set of simultaneous equations:

y1 = x0 + 1; x1 = x0 + 2; y2 = y1 − 1

Substituting the value for y1 gives

y1 = x0 + 1; x1 = x0 + 2; y2 = x0

We can see that the “last” definition for x is at x1 but the expression for y2
uses an earlier definition of x. Whenever this type of situation occurs then we
cannot immediately convert such sets of equations back to sequential code. The
last step discusses possible solutions for this problem.
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Redundant Definitions. We would like to remove traces of the conversion and
abstraction functions and so the next step after substitution is to remove re-
dundant definitions. A definition xi := e is redundant in a set of simultaneous
equations if no equation uses xi and there exists some definition xj := e′ where
j > i. This last condition ensures that we do not remove the “last” definition
of a variable (and since we convert using a form of SSA we know that the last
definition of a variable will have the largest subscript).

Converting back. Once the set of simultaneous equations has been reduced they
need to be converted to sequential code. As mentioned earlier, sometimes we
cannot immediately convert the set of equations back to sequential code. For
example, suppose that after substitution and refinement we are left with the
following pair of simultaneous equations:

x1 = x0 + 2; y2 = x0

This cannot be converted to:

x := x+ 2; y := x

as the final value of y in this sequence is equivalent to x1 not x0 as required.
One solution is to introduce a new variable which holds the value of x0:

t1 = x0; x1 = x0 + 2; y2 = t1

So this can be converted to:

t := x; x := x+ 2; y := t

A.3 A Loop Proof

In Section 3.1 a variable encoding was used in a while loop. Here is the proof of
correctness to show that af ; P ≡ O(P ); af .

af ;P
≡ {definitions}
af ; i := 1; s := 0; while (i < 15) do {s := s+ i; i := i+ 1}

≡ {cf ; af ≡ skip}
af ; i := 1; s := 0; cf ; af ; while (i < 15) do {s := s+ i; i := i+ 1}

≡ {Equations (5) and (6)}
i := 2; s := 0; af ; while (i < 15) do {s := s+ i; i := i+ 1}

≡ {Equation (8)}
i := 2; s := 0; while ((i/2) < 15) do {af ; s := s+ i; i := i+ 1; cf}; af

≡ {Equation (6)}
i := 2; s := 0; while ((i/2) < 15) do {s := s+ (i/2); i := 2 ∗ ((i/2) + 1)}; af
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≡ {exact arithmetic}
i := 2; s := 0; while (i < 30) do {s := s+ i/2; i := i+ 2}; af

≡ {definitions}
O(P ); af

A.4 Variable Split

In Section 3.2 we give a transformation for the statement S ≡ x+ +. We show
that cf ; O(S); af ≡ S and so the transformation is correct.

cf ;O(S); af
≡ {af ; cf ≡ skip}
cf ; if (b == 9) then {af ; cf ; a := a+ 1; b := 0; af ; cf}

else {af ; cf ; b := b+ 1; af ; cf }; af
≡ {Equation (7)}
cf ; af ; if ((x mod 10) == 9) then {cf ; a := a+ 1; b := 0; af}

else {cf ; b := b+ 1; af}; cf ; af
≡ {definitions and cf ; af ≡ skip}

if ((x mod 10) == 9)
then {a := x div 10; b := x mod 10; a := a+ 1; b := 0; x := 10 ∗ a+ b}
else {a := x div 10; b := x mod 10; b := b+ 1; x := 10 ∗ a+ b}

≡ {simultaneous equations in branches}
if ((x0 mod 10) == 9) then {a1 = x0 div 10; b1 = x0 mod 10; a2 = a1 + 1;

b2 = 0; x1 = 10 ∗ a2 + b2}
else {a3 = x0 div 10; b3 = x0 mod 10; b4 = b3 + 1; x2 = 10 ∗ a3 + b4}

≡ {substitutions}
if ((x0 mod 10) == 9) then {x1 = 10 ∗ (x0 div 10) + 10}

else {x2 = 10 ∗ (x0 div 10) + (x0 mod 10) + 1}
≡ {modular arithmetic}

if ((x0 mod 10) == 9) then {x1 := x0 + 1} else {x2 := x0 + 1}
≡ {convert back to assignments}

if ((x mod 10) == 9) then {x := x+ 1} else {x := x+ 1}
≡ {identical branches}
x := x+ 1

A.5 Array Splitting

We sketch a derivation for the array transformation from Section 4.2 by com-
puting af ;S; cf which, by Equation (5), is equivalent to O(S). Note that for
arrays, when converting to a set of simultaneous equations, we use the normal
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subscripts to denote new assignments on the arrays and the index i but not on
the dummy variable j.

af ;S; cf
≡ {definitions and convert to simultaneous equations}

if (c(j)) then A1[j] = P0[fp(j)] else A1[j] = Q0[fq(j)];
A2[i] = A1[i− 1] +A1[i− 2];
if (c(j)) then P1[fp(j)] = A2[j] else Q1[fq(j)] = A2[j]

≡ {substitute value for A1 with j = i− 1 and then with j = i− 2}
if (c(j)) then A1[j] = P0[fp(j)] else A1[j] = Q0[fq(j)];
if (c(i− 1)) then {if (c(i− 2)) then A2[i] = P0[fp(i− 1)] + P0[fp(i− 2)]

else A2[i] = P0[fp(i− 1)] +Q0[fq(i− 2)]}
else {if (c(i− 2)) . . .}

if (c(j)) then P1[fp(j)] = A2[j] else Q1[fq(j)] = A2[j]
≡ {substitute values in P1 and Q1 with i = j}
. . . if (c(i)) then {if (c(i− 1)) then
{if (c(i− 2)) thenP1[fp(i)] = P0[fp(i− 1)] + P0[fp(i− 2)] else . . .} else {. . .}

else {if (c(i− 1)) then
{if (c(i− 2)) then Q1[fq(i)] = P0[fp(i− 1)] + P0[fp(i− 2)] else . . .}

else{. . .}
≡ {sequential code (removing redundant assignments)}

if (c(i)) then {if (c(i− 1))
then {if (c(i− 2)) then P [fp(i)] := P [fp(i− 1)] + P [fp(i− 2)]

else P [fp(i)] := P [fp(i− 1)] +Q[fq(i− 2)]}
else {if (c(i− 2)) thenP [fp(i)] := Q[fq(i− 1)] + P [fp(i− 2)]

elseP [fp(i)] := Q[fq(i− 1)] +Q[fq(i− 2)]}}
else {if (c(i− 1)) then {if (c(i− 2))

then Q[fq(i)] := P [fp(i− 1)] + P [fp(i− 2)]
else Q[fq(i)] := P [fp(i− 1)] +Q[fq(i− 2)]}

else {if (c(i− 2))
thenQ[fq(i)] := Q[fq(i− 1)] + P [fp(i− 2)]
else Q[fq(i)] := Q[fq(i− 1)] +Q[fq(i− 2)]}}

≡ {Equation (5)}
O(S)

This last expression can often be simplified by removing infeasible paths.
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Abstract. In many financial or legal scenarios (such as trading stocks,
wills and safe-deposit boxes), we want to ensure that a certain task (read-
ing the buy/sell instruction, obtaining the property, or opening the box
in emergencies respectively) cannot be performed until a certain time or
a certain pre-defined condition occurs. Token-controlled public key en-
cryption (TCE), introduced in [2], is a handy tool for these situations.
Roughly speaking, messages are encrypted by a public key together with
a secret token in TCE, such that the receiver holding the corresponding
private key cannot decrypt until the token is released. TCE is also useful
in rapid distribution of information and sealed-bid auctions, etc.

In Financial Cryptography 2006, Galindo and Herranz [15] proposed
a generic construction of TCE in the random oracle model. However, we
show that it is insecure against insider attack, namely, a malicious user
without the token can learn partial information about the message.

We propose a strengthened definition of security, and also new pri-
vacy requirements. It turns out that [15] is also insecure against outsider
attack in our new definition. We then give a new generic construction
provably secure in the standard model, which is nearly as efficient as a
standard public key encryption scheme.

Keywords: Token-controlled, public key encryption, provable security,
timed-release encryption, standard model.

1 Introduction

Token-controlled public key encryption (TCE), introduced by Baek, Safavi-Naini
and Susilo [2], is an encryption scheme where the messages are encrypted by a
public key together with a secret token, such that the receiver holding the cor-
responding private key cannot decrypt without the token. The sender has to
delegate the token to a security-mediator (SEM) beforehand, whom is responsi-
ble for releasing the token when some pre-defined condition occurs.

1.1 Applications

Some motivating applications of TCE are discussed in [2] and [15]. The first
scenario considers a millionaire who makes his legal will, but wants to keep
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it secret until the last moment. He can encrypt the wills with TCE, providing
the corresponding ciphertexts to his family members, and the token to a lawyer.
After the millionaire passes away, this lawyer will release the token and each of his
family members can decrypt the ciphertexts and recover the wills. Another one
is about the access of properties in emergencies, says deposit box of a bank. The
owner can encrypt the secret which opens the box to the spouse using TCE, and
instruct the bank to provide the spouse with the token in case of illness or other
problems prohibiting the owner’s own opening of the box. More applications
related to timed-release encryption (TRE) will be described afterward.

1.2 Related Work

In [2], two constructions in the random oracle model are proposed. Their security
model assumes the SEM will release the token honestly, yet can be maliciously
try to break the confidentiality of the ciphertext. Galindo and Herranz [15] noted
that such a security model is inadequate. A single ciphertext could be decrypted
to different messages under different tokens, which means the SEM can release
a “fake” token such that the decryption gives an entirely different message.
To prohibit such an attack, they equipped TCE with strong existential token
unforgeability. A generic construction secure in this new sense in the random
oracle model is proposed. Since no real function can implement a true random
oracle, a scheme with security proven in the standard model is more desirable.

1.3 Our Contributions

1. Applications: We give a detailed picture of the similarity between token-
controlled public key encryption and timed-release encryption, clarify their
differences and point out the scenarios in which the former is applicable.

2. Stronger Definitions: We generalize the notion of token-controlled public key
encryption, in which an auxiliary message that is not controlled by the token
can be included, and the token used for encryption can be different from the
token delegated to the security-mediator. We also consider stronger security
notions against both outsider and insider attack, and new privacy concerns
including release-condition confidentiality and ciphertext unlinkability.

3. Attacks: We refute the security proof in [15] by showing an insider attack,
namely, a malicious user can learn partial information about the message, by
using only the corresponding private key, without the token. We also discuss
why their scheme is also insecure against outsider attack in our new model.

4. Constructions without Random Oracles: We propose a new generic construc-
tion in the standard model, which is nearly as efficient as a standard public
key encryption scheme. Same as previous schemes, a single token can control
the decryption of more than one ciphertexts for multiple receivers, and the
size of the token is small in comparison with the ciphertext size.

We give a discussion of the differences between TCE and TRE; and further
applications of TCE in the next section. Section 3 briefly explains the notation
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and the building blocks that will be used in the rest of this paper. In Section 4, a
formal definition of TCE and its security properties are presented. We review the
construction in [15] and show that their scheme is actually insecure in Section
5. Section 6 gives our new construction, together with its security and efficiency
analysis. Concluding remarks are given at the end of this paper.

2 Timed-Release Encryption

An idea closely related to TCE is timed-release encryption (TRE)1. In TRE, a
message sender encrypts a message “into the future”. A trusted agent releases
trapdoors at specified times which is essential for the decryption. Recent trends
require TRE to be non-interactive, i.e. no communication is needed between the
agent and other entities. Many applications of TRE are discussed [5,6,10,17,18].
For examples, [10] talks about asking a broker to sell a stock at a particular
future time, and [17] gives an application in certified email system.

A more general notion is event-release encryption, where a sender who en-
crypts a message with the wish that the recipient can only decrypt if a specific
event occurs. Specific constructions of TRE can be easily extended to support
such a notion by releasing an event-specific trapdoor after the event occurred.

It is stressed in [6] that TRE is different from TCE, but the applicabilities in
different scenarios are not elaborated. In certain scenarios, we note that TCE
indeed provides a partial solution to the TRE problem.

2.1 TRE from Double Encryption

Two parties’ secret knowledge are required to decrypt, it is natural to ask “why
not double encrypt?”. In the TRE scheme proposed by Di Crescenzo et al. [10],
the ciphertext is c = EncekA(EncekR(m)) where m is the message, ekA and ekR is
the public key of the agent and the receiver respectively, and Encek(m) denotes
the public key encryption of message m under the public key ek. This ciphertext
is sent together with the release-time to the receiver. On receiving c and the time
information, the receiver interacts with the agent using a “conditional oblivious
transfer protocol”. Such a protocol ensures that if the release-time is not less than
the current time, it decrypts the first level and gives PKE.EncekR(m); otherwise,
receiver learns nothing. However, this protocol [10] is computationally intensive.
Moreover, chosen-ciphertext security of double encryption [13] is not considered.

2.2 Privacy Issues

The key difference between TCE and TRE is that the sender must contact the
SEM (once) for delegating the token in the case for TCE. It is true that the
solution is interactive, but the communication is quite minimal.
1 Time-lock puzzle approach (e.g. [19]), in which the receiver has to invest a significant

computational effort to solve a difficult problem, is not considered in this paper. This
approach does not involve a mediator but it is computationally expensive for the
receiver and the release-time is not precisely controllable.
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The senders in TCE cannot be anonymous to the SEM, but in our motivating
scenarios, the SEM is going to charge the senders for the service fee anyway.
Moreover, it is not an issue if the senders are performing the role of SEM them-
selves (in the applications we will discuss shortly afterward). Another privacy
issue is about release-time (or release-condition) confidentiality, i.e. the cipher-
text itself does not leak any information about the pre-specified release condition.
Similar to event-release encryption, the SEM knows the event’s details in order
to release the token at the right time2. We will initiate the study of this concept
in the context of TCE. Apart from using the event’s details, malicious SEMs
may try to find out what ciphertexts are controlled by the token they hold. This
concern will be addressed by our proposed notion of ciphertext unlinkability.

2.3 Pre-open Capability

In TRE, a single time-specific trapdoor controls the decryption of all messages of
the whole system to be recovered at a given time. Pre-opening of some messages
in a general TRE scheme means pre-opening of all messages at a given time.

In [17], the concept of pre-open capability is introduced, such that the sender
can help the receiver to decrypt the ciphertext (without sending the stored plain-
text) by publishing a pre-open key. As argued in [11,17], many applications of
TRE (e.g. electronic auction) potentially needs the pre-open capability. However,
it is later noted in [11] that the security model and hence the scheme in [17] does
not cover a realistic attack; namely, the sender can make the receiver to get a
message different from which was originally encrypted by sending a false pre-
open key. A concrete scheme secure against this attack is also proposed in [11].
This security requirement matches the strong existential token unforgeability of
TCE. In other words, any TCE scheme with strong existential token unforge-
ability automatically supports pre-open capability (in the sense of [11]). On the
other hand, this capability may not exist in a general TRE scheme like [6].

2.4 Requirements on the Security-Mediator

Another minor difference is that the SEM must retain all the tokens collected
instead of using a system’s private key to generate all time-specific trapdoors.
Moreover, the fact that each sender prepares his/her own token independently
implies that SEM may need to release more than one token at a time; in con-
trast to a single time-specific trapdoor in TRE. Firstly, note that a single token
can control many ciphertexts for TCE. Besides, the trusted agent in the TRE
paradigm is usually a powerful server with dedicated protection, since its com-
promise means the whole system’s security is broken. On the other hand, TCE
enjoys the advantage that the leakage of one token does not affect the encryption
using another independent token. The trust level in the TRE paradigm is similar
to that of certificate authority of a public key infrastructure while in TCE the
role of the SEM can be performed by lawyers or some financial institutions.
2 If the same token is controlling the ciphertexts of more than one recipient, the SEM

needs to know whom the token should be released to instead of just making it public.



Token-Controlled Public Key Encryption in the Standard Model 319

2.5 Security and Efficiency

To the best of the author’s knowledge, there is no TRE scheme in the standard
model. Existing TRE schemes [5,6,17,18] are often constructed by a combination
of an unlock method made possible by identity based encryption (IBE) with a
public key encryption (PKE). However, IBE is in general more computationally
expensive than PKE. In particular, existing TRE schemes involves pairing compu-
tation which is computationally expensive (e.g. see [1] for a brief discussion). On
the other hand, our implementation of TCE is pairing-free. One should employ
TCE instead of TRE whenever possible, for better security and efficiency.

2.6 More Applications

After knowing the differences, we see many more applications of TCE. Generally
speaking, TCE is applicable in scenarios where the receiver believes that the
senders will not prepare incorrect messages for encryption, but does not want
the senders to change their mind once the messages are sent.

Rapid Dissemination of Information. Scheduled payment is one of the
motivating applications discussed in the seminal work [2]. Suppose a company
wants to send pay slips to its employees, in a way that each employee is required
to perform decryption to get an authorization code for obtaining the salary. For
obvious reason the company may not want to pay before the payday. On the
other hand, sending pay slips on a single day is undesirable due to the large
number of employees (which causes a large volume of network traffic).

The same situation applies for rapid dissemination of freshly published, crucial
or highly priced, and formerly secret information [18], such as stock market val-
ues, strategic business plans, news agencies timed publications, licensed software
updates, etc. Considering the size of the confidential information is significantly
larger than the size of an encryption key (which is often the case), timely dis-
tribution of information to a large and distributed community of users is often
impeded by network traffic jams. With TCE, messages (the pay slips, or any
confidential material) can be encrypted beforehand and gradually distributed.
Holding the ciphertext without the token means no one can perform the de-
cryption. At a later time (the payday, or when some disclosure requirement is
satisfied), a single small-sized token can be released to enable all the recipients
to read the previously encrypted messages.

Sealed-bid Auctions and Electronic Lotteries. Sealed-bid auction is nat-
urally supported by TCE. All bidders can encrypt their bids using TCE and
send the resulting ciphertexts to the dealer, who will “publish” all the encrypted
bids in some bulletin board where all bidders can access. At the end-time of
the auction (or when all bidders agree to open their bids), all bidders publish
their tokens. Due to the strong existential token unforgeability (to be defined
formally), they cannot come up with a token such that the ciphertext decrypts
to a message different from the one that is encrypted before. On the other hand,
no one gain any knowledge before the release time of the tokens.
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Electronic lotteries can be realized similarly3. The decryption token and the
encrypted ticket can be used as a proof for the ownership of a winning ticket.

3 Preliminaries

If S is a finite set, x← S denotes the operation of picking an element at random
and uniformly from S. If S is a probabilistic algorithm, x← S(y) denotes S has
been executed on some specified input y and its random output has been assigned
to the variable x. If 
 ∈ N then 1� denotes the bit-string of 
 ones. The term
“negligible” refers to the class of negligible functions in the parameter of 
. The
acronym PPT stands for probabilistic polynomial time. Finally, let D1 and D2 be
two probability distributions over the same base set S; the statistical difference
between D1 and D2, is defined as ||D1 −D2|| =

∑
s∈S |PrD1 [s]− PrD2 [s]|.

3.1 Trapdoor Partial One-Way Functions

A trapdoor one-way function is a function that is easy to compute, but difficult
to invert completely without an extra piece of information termed as trapdoor. A
trapdoor partial one-way function (TPOWF) [14] is one that inversion means only
part of the input can be recovered. TPOWF is used in the generic construction
of TCE in [15] which we will review.

Formally, TPOWF refers to a family of injective maps f : X × Y → Z, where
X ,Y,Z are polynomial size set families, with the following three PPT algorithms.

1. Gen(1�) outputs a key pair (ek, dk) and the descriptions of the sets X ,Y,Z.
2. Eval is a deterministic evaluation algorithm that takes on input ek, x ∈ X

and y ∈ Y and outputs fek(x, y).
3. Inv is a deterministic inversion algorithm that takes on input dk and z ∈ Z,

returns x ∈ X such that z = fek(x, y) where y ∈ Y.

An element from X can be samplable and recognizable in polynomial time.
The partial one-wayness requires the following probability to be negligible,

for any PPT adversary A without the trapdoor key dk:

Pr
[

(ek, dk,X ,Y,Z)← Gen(1�);
x← X ; y ← Y : A(ek, fek(x, y)) = x

]
.

3.2 Secret Key Encryption

Our construction relies on a stateless secret key encryption (SKE) scheme, which
is defined by a triple of PPT algorithm (Gen,Enc,Dec):

– Gen takes security parameter 1�; outputs a secret key sk ∈ K�, the descrip-
tions of a message space M� and the secret key space K�.

3 We claim that TCE is just a helper tool in these scenarios. There are other specific
security requirements (e.g. see [8]) which TCE may not help.



Token-Controlled Public Key Encryption in the Standard Model 321

– Enc (probabilistic) takes sk and a message m, outputs a ciphertext C.
– Dec (deterministic) takes sk and C, outputs a message m or ⊥ if C is invalid.

For correctness, we require Decsk(Encsk(m)) = m for all 
 ∈ N, all sk ∈ K�

generated by Gen(1�) and for all message m ∈ M�. For security, we require
indistinguishability against adaptive chosen-plaintext attack (CPA). Formally
speaking, the following is negligible for all PPTA = (A1,A2):∣∣∣∣∣∣∣∣Pr

⎡⎢⎢⎣
(sk,M�,K�)← Gen(1�);
(m0,m1, β) ← AEncsk(·)

1 (1�);
c̃ ← Encsk(mb);
b̃ ← AEncsk(·)

2 (c̃, β);

: b = b̃

⎤⎥⎥⎦− 1
2

∣∣∣∣∣∣∣∣ .

3.3 Public Key Encryption

Our construction is built on a public key encryption scheme (PKE), which is
defined by a triple of PPT algorithm (Gen,Enc,Dec):

– Gen takes security parameter 1�; outputs a key pair (ek, dk), the descriptions
of a message space Mek and a ciphertext space Cek.

– Enc is a randomized algorithm takes an encryption key ek, and a message
m as input, outputs a ciphertext C.

– Dec is a deterministic algorithm takes a decryption key dk, and a ciphertext
C, outputs a message m or ⊥ if C is invalid.

For correctness, we require Decdk(Encek(m)) = m for all 
 ∈ N, (ek, dk) given
by Gen(1�) and all m ∈ Mek. For security, we require indistinguishability against
adaptive chosen-ciphertext attack (CCA) for multiple-user4. Formally speaking:∣∣∣∣∣∣∣∣∣∣

Pr

⎡⎢⎢⎢⎢⎣
(eki, dki,Meki , Ceki) ← Gen(1�), ∀i ∈ {1, · · · , n};

(m0,m1, β) ← ADec⊥
dk1

(·),··· ,Dec⊥
dkn

(·)
1 (1�);

c̃i ← Enceki (mb), ∀i ∈ {1, · · · , n};

b̃ ← A
Decc̃1

dk1
(·),··· ,Decc̃n

dkn
(·)

2 (c̃, β);

: (b = b̃)

⎤⎥⎥⎥⎥⎦− 1
2

∣∣∣∣∣∣∣∣∣∣
is negligible for all PPTA = (A1,A2), where the decryption oracle Decc̃

dk(c) is:

if (c = c̃) then aborts; else return Decdk(c).

3.4 Commitment

The final building block of our construction is a commitment scheme (COM),
which is a pair of PPT algorithms (Send,Rec) such that:

– Send takes as input 1� and a message r ∈ {0, 1}∗; returns (com, dec) ∈ U ×V
representing the commitment and the decommitment string respectively.

– Rec takes (1�, com, dec) and returns r ∈ {0, 1}∗ ∪ {⊥}.

4 This is weaker than the CCA-security in [3] since we only provide the encryption
under different public keys of the same message instead of a left-or-right oracle [3].
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Correctness requires Rec(1�, Send(1�, r)) = r, ∀
 ∈ N, r ∈ {0, 1}∗. For security,
we consider binding and hiding properties. Hiding means that com should not
reveal information about r; binding means an adversarially generated com can be
“opened” to only a single legal value of r. The formal definitions are as follows.

– Hiding: ∀r1, r2 ∈ {0, 1}∗, ||C�(r1)−C�(r2)|| = O(2−�), where C�(r) denotes
the distribution over the commitment strings for r, i.e. the first component
of Send(1�, r)’s output.

– Binding: For all PPT adversaries A, the following probability is negligible:

Pr

⎡⎢⎢⎣
(com, dec, dec′)← A(1�) :
(Rec(1�, com, dec) �=⊥) ∧
(Rec(1�, com, dec′) �=⊥) ∧

(Rec(1�, com, dec) �= Rec(1�, com, dec′))

⎤⎥⎥⎦.
4 Definitions of Token-Controlled Public Key Encryption

A token-controlled public key encryption consists of the below PPT algorithms:

– Gen takes security parameter 1�; outputs a key pair (ek, dk), the descriptions
of a message space Mek, a ciphertext space Cek, an encrypting token space
and a delegated token space.

– Tok takes security parameter 1�, returns an encrypting token τ , a token
verifier com to be used in Enc, and a delegated token dec for the SEM.

– Enc is a randomized algorithm taking an encryption key ek, a message m
(with an optional auxiliary message aux,) an encrypting token τ , and a token
verifier com as input, outputs a ciphertext C.

– PDec is a deterministic algorithm taking a decryption key dk and a ciphertext
C as input, outputs either an auxiliary message aux, or ⊥ if C is invalid.

– Dec is a deterministic algorithm taking a decryption key dk, a ciphertext C
and a delegated token dec as input, outputs either a message m, ⊥t if dec is
not valid, or ⊥c if C is invalid.

For correctness, we require (aux can be an empty string)

– PDecdk(Encek(m, aux, τ, com)) = aux for all 
 ∈ N, (ek, dk) given by Gen(1�),
all m, aux ∈Mek and all (τ, com, dec) given by Tok(1�);

– Decdk(Encek(m, aux, τ, com), dec) = m for all 
 ∈ N, (ek, dk) given by
Gen(1�), all m, aux ∈Mek and all (τ, com, dec) given by Tok(1�).

We generalized the notion in [2,15] a bit, the differences are highlighted below.

– An auxiliary message (which may contain the condition under which the
recipient can get the delegated token) and the corresponding PDec algorithm
to recover such message from the ciphertext by the decryption key, are added.

– The token used by the sender in encrypting the message (the encrypting
token) is not necessary equal to the token delegated from the sender to the
SEM (the delegated token) for future decryption.

– A token verifier is passed from TCE.Tok to TCE.Enc.
– Decryption algorithm gives different signals for different failure cases, de-

pending on whether the delegated token or the ciphertext is invalid.
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4.1 Relations Among Existing Notions

The end-users of TCE are those who hold the private keys. Attacks model of
[2] and [15] make the distinctions between insider and outsider. The former has
the private key and the later does not. The original definition in [2] further
distinguishes between two types of outsider. Type I attacker does not have the
token while Type II attacker models a SEM since it is supplied with the token.
Counting also the insider attacker, this makes three kinds of attacker altogether.

It seems that Type II attacker is strictly stronger than Type I, which is also
suggested by [15]. However, not to forget the oracle queries available to these
two types of attackers. A decryption oracle in the model of [2] and [15] takes
a token-ciphertext pair as input and decrypts the given ciphertext using the
supplied token and the private key embedded. If a Type II attacker is allowed
to query the decryption oracle for the challenge ciphertext, the challenge can be
solved trivially since it knows the correct token. On the other hand, a Type I
attacker is not supplied with the correct token, such a restriction is not necessary.

Nonetheless, it is easy to see that with the private key, a decryption oracle
without any restriction can be easily realized; while a Type I attacker only has
access to decryption oracle but not the private key itself. In other words, an
insider who possesses the private key is strictly stronger than a Type I attacker.
Due to these observations, we still “follow” the model of Galindo and Herranz
[15] in the sense that we only consider two kinds of attacker: outsider and insider.

4.2 Outsider Indistinguishability

Outsider indistinguishability captures the situation where the attacker (e.g. the
SEM) has the token but without the corresponding private key. This property
also captures the reusability of the same token. If the same token is used to
encrypt messages to many different receivers, and at a later stage some of these
receivers obtain the correct token, they cannot obtain any partial information
about message encrypted to some different receivers.

We give two extra level protections considered first time in this work.

1. The scheme should be secure for adversarially chosen token, which provides
security when the message sender is tricked to use some token, for example by
malicious code introduced to the machine where the ciphertext is prepared.

2. Partial decryption oracle is assumed for the adversary. An intention of intro-
ducing this oracle is somewhat similar to the role of the decryption oracle in
the standard CCA attack for traditional PKE. It is possible that the attacker
can somehow access the machine of the subject under attack, that can com-
pute (part of the) decryption result for the attacker. Moreover, user may
performs the partial decryption well before the recipient of the token, and
carelessly leaves the partial decryption result unprotected in the belief that
it is secure to do so as long as no one knows the token. This gives another
motivation for the partial decryption oracle.

Outsider indistinguishability is formally modeled by the following game.
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1. Initialization: The challenger C executes TCE.Gen for n times indepen-
dently, i.e. (eki, dki) ← TCE.Gen(1�) for i = 1, · · · , n. The adversary A gets
the public keys 〈ek1, · · · , ekn〉, but not the decryption keys 〈dk1, · · · , dkn〉.

2. Phase 1: The challenger C entertains any queries to token generation, en-
cryption, partial decryption and complete decryption oracle from A. Impor-
tant points about the queries include:

(a) For encryption oracle, A can supply the encrypting token and the token
verifier, but it is not required to hand in the delegated token.

(b) For partial decryption oracle, A does not required supplying the dele-
gated token dec, and the oracle returns a partial decryption result by
dki, that can possibly be further decrypted by the delegated token.

(c) For complete decryption oracle, A should supply the delegated token
dec, but it is not required to hand in the decryption key dki.

3. Challenge: A outputs two messages m0,m1 from ∩1≤i≤nMpki of the same
length, an encrypting token τ and a token verifier com to C. C chooses a
random bit b and returns c∗i = TCE.Encpki(mb, τ, com) for i = 1, · · · , n.

4. Phase 2: The adversary proceeds as in Phase 1, with two restrictions:
(a) A cannot ask for the partial decryption of a ciphertext c∗i under decryp-

tion key dki for any i = 1, · · · , n; and
(b) A cannot ask for the complete decryption of a ciphertext c∗i under de-

cryption key dki for any i = 1, · · · , n, irrespective of what the delegated
token it supplies5.

5. Guess: Finally, A outputs a guess b′ ∈ {0, 1}.

The adversary’s advantage is defined as |Pr [b′ = b]− 1
2 |.

4.3 Insider Indistinguishability

Insider security of TCE basically means the ciphertext is indistinguishable even
with the secret key, as long as the token is unknown. Moreover, an embedded-
token encryption oracle is provided to the adversary. The intuitive meaning of
this oracle is to ensure the ciphertext would not leak any information about the
token that is useful for distinguishing the ciphertexts.

This property is formally modeled by the following game.

1. Initialization: The challenger C executes TCE.Tok, i.e. (τ, com, dec) ←
TCE.Tok(1�). Both τ and dec are kept secret, whereas the security parameter
1� and the token verifier com are given to A.

5 It does not make sense to entertain the complete decryption of the challenge cipher-
text. Suppose the delegated token is the same as the one implicitly defined by the
encrypting token and the token verifier chosen by the adversary in the preparation
of the challenge ciphertext, decrypting for the adversary means no challenge is given
to the adversary at all. On the other hand, if the delegated token is a different one,
from the strong existential token unforgeability we know that the decryption either
returns the original message or invalid. There is no challenge for the former case.
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2. Phase 1: A can make queries to an embedded-token encryption oracle
TCE.Encek(m, τ, com), for public key ek and message m of its choice.

3. Challenge:A outputs a challenge public key ek, and two messagesm0,m1 ∈
Mek of the same length to C. C chooses a random bit b ∈ {0, 1} and returns
c∗ = TCE.Encek(mb, τ, com).

4. Phase 2: The adversary can proceed as in Phase 1, without any restriction.
5. Guess: A outputs a guess b′ ∈ {0, 1}.

The adversary’s advantage is defined as |Pr [b′ = b]− 1
2 |.

Up to this point, it is the definition from [15]. It is possible to consider some
stronger notions.

1. Instead of returning a single token verifier com to A, it is possible to return
polynomially-many (says n) of them and askA to choose one to be challenged
with. We consider the basic notion since a scheme secure in the “single-token
sense” is also secure in the “multiple-token sense” with loss of a factor of n
for the tightness of the security reduction.

2. An embedded-token decryption oracle can be provided to the adversary, with
the natural restriction that it cannot be used to decrypt the challenge ci-
phertext. We term this notion as strong insider indistinguishability, which is
also firstly considered in our work. But we made the choice of not includ-
ing this in our standard definition since we believe that the SEM is paid to
well-protect the secret token from arbitrary access in realistic scenarios like
the wills encryption. Nevertheless, we will discuss how one can extend our
proposed scheme to achieve it in Section 7.

4.4 Strong Existential Token Unforgeability

This is the property proposed in [15] which does not supported by the original
schemes in [2]. Informally, this new notion ensures the infeasibility to come up
with a valid ciphertext c such that it can be decrypted to two different messages
under two different tokens. The adjective “strong” here means not only a fake
token but also the ciphertext are forged by the adversary.

This property is formally modeled by the following game [15].

1. Initialization: The challenger C executes TCE.Gen, i.e. (ek, dk) ←
TCE.Gen(1�) The adversary A receives the public key ek, but not the de-
cryption key dk.

2. Oracle Access: A can make queries like Phase 1 in the insider indistin-
guishability game.

3. Forgery: A outputs two delegated tokens dec and dec′, and a ciphertext C.

The adversary’s advantage is defined as

Pr
[
(TCE.Dec(dk,dec)(C) = m) ∧ (TCE.Dec(dk,dec′)(C) = m′)

∧ (dec �= dec′) ∧ (m �= m′) ∧ (m �=⊥) ∧ (m′ �=⊥)

]
Similar to the discussion of insider indistinguishability, we can easily get unforge-
ability for n public keys from a scheme that is unforgeable for a single public key
with loss of a multiplicative factor n in the tightness of the security reduction.
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4.5 Release-Condition Confidentiality and Ciphertext Unlinkability

While in theory the ciphertext of TCE may not include any information about
the release condition, this information should be sent to the recipient in practice.
On the other hand, it is undesirable for any other people (including the SEM)
to know about the associated release condition by just inspecting the ciphertext.
This is release-condition confidentiality. Apart from the knowledge of the release-
condition, a malicious SEM may try to use the knowledge of the delegated token
to find out which ciphertext is controlled by the token. We want to prevent this
from happening with ciphertext unlinkability.

Due to the lack of space, we just describe how to change the notion of outsider
indistinguishability to model these requirements. Release-condition confidential-
ity can be modeled easily by asking the adversary to return a single message to be
encrypted and a pair of release conditions. A ciphertext encrypting the message
with a random condition among the pair is returned to the adversary. The ad-
versary’s advantage is defined as the probability of telling the random choice the
challenger has made over 1

2 . For ciphertext unlinkability, the adversary chooses
a message m, two pairs of encrypting token and token verifier (τ0, com0) and
(τ1, com1) to be challenged with. The adversary’s advantage is defined as the
probability of guessing correctly the bit b in TCE.Encpki(m, τb, comb) over 1

2 .

5 Analysis of an Existing Generic Construction

We show the generic construction of TCE in [15] is insecure against insider attack.
Our analysis applies for all TPOWF, e.g. the RSA function suggested in [15].

5.1 Review

TCE.GenGH : The input is a security parameter 1�.

1. Let f be a TPOWF family over the sets X ,Y,Z as previously defined;
2. Run (ek, dk)← TPOWF.Genf (1�);
3. Let the message space and the token space be M� = {0, 1}p(�) and T� =
{0, 1}t(�) for some polynomial p(
) and t(
) respectively;

4. Let G̃ : X × T� → M� and H̃ : X ×M� → Y be two hash functions, the
ciphertext space Cek is Z ×M�;

5. The public parameter is 〈ek, G̃, H̃,M�, T�, Cek〉 and the decryption key is dk.

TCE.TokGH : Output a random element from τ from T�. This token serves as
both the encrypting token (will be used in TCE.EncGH) and the delegated token
(will be used in TCE.DecGH) in our new framework.

TCE.EncGH : Suppose the message to be encrypted is m ∈ M� and the token
chosen is τ , the ciphertext is c = 〈fek(x, y), G̃(x, τ) ⊕ m〉, where y = H̃(x,m)
and x is uniformly chosen in X .
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TCE.DecGH : Suppose the ciphertext to be decrypted is 〈c1, c2〉.
1. Compute x = TPOWF.Invf (c1);
2. Compute m = G̃(x, τ) ⊕ c2;
3. Return m if c1 = fek(x, H̃(x,m));
4. Return⊥ if the above equality does not hold, or either one of TPOWF.Invf (c1)

and G̃(x, τ) cannot be computed.

5.2 Insecurity Against Insider Attack in the Old Model

We start by pointing out the problematic statement in the proof of insider secu-
rity in [15]. It is claimed that the value b is independent from A’s view as long
as A does not query G̃ at the point (x∗, τ∗), where b is the random bit chosen
by the challenger, x∗ and τ∗ are the value of x and the token associated with
the challenge ciphertext respectively. The statement is not true since the first
part of the ciphertext component is fek(x∗, y∗), where y∗ = H̃(x∗,mb). In other
words, the value of b is dependent on the adversary’s view (part of the challenge
ciphertext) no matter whether a “clever” G̃ query is made.

Suppose the adversary got c∗ = 〈c1, c2〉 = 〈fek(x∗, y∗), G̃(x∗, τ∗)⊕mb〉 as the
challenge ciphertext, a concrete attack is as follows.

1. Compute x = TPOWF.Invf (c1) with the decryption key dk;
2. For b′ ∈ {0, 1}, check whether c1 = fek(x, H̃(x,mb′ )).
3. Output b′ that makes the above equality holds.

The function f is injective, the adversary must get x = x∗. Being a function,
f must be deterministic, and the value of c1 will be either fek(x, H̃(x,m0)) or
fek(x, H̃(x,m1)). Note that no G̃ query is made and the token is not required.

One may try to fix the scheme by setting y = H̃(x, τ,m) (or many possibilities
of inputs). Unfortunately, we will show that their scheme is insecure against
outsider in our new model.

5.3 Insecurity Against Outsider Attack in the New Model

Our notion of outsider indistinguishability gives the attacker accesses of a partial
decryption oracle using user’s decryption key. Note that the integrity checking
(the checking step determines whether a message m or an invalid symbol ⊥ is
returned) in their scheme requires the token as an input and cannot be put into
the partial decryption algorithm. The use of a trapdoor partial one-way function
without any integrity checking is surely not enough for CCA-security.

Suppose RSA is used to instantiate TPOWF, with n, e, d as the public mod-
ulus, the encryption exponent and the decryption exponent respectively, such
that ed = 1 mod φ(n) where φ(·) is the Euler totient function. The partial de-
cryption oracle computes the d-th power for the attacker. The first component
of the challenge ciphertext contains (xe) mod n, where x is the value associated
with the challenge ciphertext. An adversary can just find a random r ∈ Zn, give
(re)(xe) mod n (i.e. a ciphertext different from the challenge one) to the partial
decryption oracle, get back x′ = rx, and obtain the message by c2⊕ G̃(x′r−1, τ).
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6 A New Generic Construction in the Standard Model

We assume that PKE encrypts message that is concatenated from the ciphertext
of SKE, the commitment string of COM, and the auxiliary information.

TCE.Gen: The input is a security parameter 1�.

1. Run (ek, dk,Mek, Cek)← PKE.Gen(1�);
2. The message space is the message space M� of SKE while the ciphertext

space is Cek. The encrypting token space is the key space K� of SKE, the
token verifier space is the commitment string space U� of COM, the delegated
token space is the decommitment space V� of COM;

3. The public parameter is 〈ek,M�,K�, Cek,U�,V�〉;
4. The secret key is dk.

TCE.Tok: This algorithm just needs a random coin.

1. Randomly selects τ ∈ K�;
2. Run (com, dec)← Send(1�, τ);
3. Output (τ, com, dec) as the encrypting token, the token verifier, and the

delegated token respectively.

TCE.Enc: Taking a message m ∈ M�, an optional auxiliary message aux ∈
M�, an encrypting token τ and a token verifier com, output c = PKE.Encek

(σ||com||aux), where σ ← SKE.Encτ (m).

TCE.PDec: Suppose the ciphertext is c′.

1. Run (σ′||com′||aux)← PKE.Decdk(c′);
2. Output aux or return ⊥ if step 1 fails.

TCE.Dec: Suppose the ciphertext is c′ and the delegated token is dec′.

1. Run (σ′||com′||aux)← PKE.Decdk(c′);
2. Run τ ′ ← Rec(1�, com′, dec′);
3. Output m′ ← SKE.Decτ ′(σ);
4. If step 2 returns ⊥, return ⊥t; else if step 1 or step 3 returns ⊥, return ⊥c.

Correctness of the scheme is easy to check: dk is used in decryption to get
σ′ and com′; with (com′, dec′), τ ′ can be recovered, which is used to undo the
secret key encryption, i.e. decrypt σ′ to get back the original message m′.

6.1 Outsider Attacks

If there exists an PPT adversary A1 that breaks the outsider indistinguishability
of our TCE scheme, we show how to build an algorithm B1 that makes use of A1

to break the indistinguishability of PKE in the multi-user setting.
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1. Initialization: Let C1 denotes B1’s challenger in breaking the indistinguisha-
bility of PKE. B1 obtains the list of public keys 〈ek1, ek2, · · · , ekn〉 and the
list of ciphertext space 〈Cek1 , · · · , Cekn〉 from C1. Using the same security
parameter 
 chosen by C1, the commitment space U� and the decommit-
ment space V� are defined accordingly; and SKE.Gen is executed to obtain
sk ∈ K�, the message space M� and the secret key space K�. The list of
TCE public parameters 〈eki,M�,K�, Ceki ,U�,V�〉 for i ∈ {1, · · · , n} are given
to A1.

2. Phase 1:
(a) Token generation oracle can be easily simulated.
(b) Encryption oracle can be simulated with the help of sk.
(c) Partial decryption oracle can be simulated by PKE’s decryption

oracle.
(d) Complete decryption oracle is easy to simulate since the adversary is

required to supply the delegated token.
3. Challenge: The adversary outputs two equal length messages m0,m1 ∈
∩1≤i≤nMpki , an encrypting token τ ′ and a token verifier com′ to B1. B1
then computes m′

0 ← SKE.Encτ ′(m0) and m′
1 ← SKE.Encτ ′(m1). The mes-

sage pair to be passed to C1 is (m′
0||com′,m′

1||com′). B1 then forwards the
challenge from C1 to A1.

4. Phase 2: A1 asks queries as in Phase 1. For partial/complete decryption
query B1 needs to ask the underlying decryption oracle. With the restric-
tions specified in the definition in Section 4, B would not pass C1’s challenge
back to C1’s decryption oracle, so B1 can simulate all the decryption queries
faithfully.

5. Guess: A1 outputs a guess b′ ∈ {0, 1}, b′ is output by B1 as its final
guess.

6. Analysis: It is easy to see that the advantage of B1 in breaking the indis-
tinguishability of PKE in the multi-user setting is the same as the advantage
of A1. With [3, Theorem 1], the advantage of B1 in breaking the indistin-
guishability of PKE for single-user is ε/n.

It is easy to see that release-condition confidentiality and ciphertext unlinka-
bility can be proven in a similar way.

6.2 Insider Indistinguishability

We show the probability of breaking the insider indistinguishability of our scheme
is negligible, given that COM is hiding and SKE is CPA-secure. Our proof follows
the structural approach advocated by Shoup [20] in defining a sequence of games.

We use the notation Pri[·] to denote the probability of an event occurring
in Game i. Game 0 is the original game in which the adversary attacks our
scheme. We are going to upper-bound |Pr0[Succ] − 1

2 |, where Succ denotes the
event that the adversary’s output bit b′ matches the bit b chosen in the insider
indistinguishability game.

In Game 1, the simulator chooses another τ ′ from K� and use it in the
embedded-token encryption oracle, but still outputs com from (com, dec) ←



330 S.S.M. Chow

Send(1�, τ) instead of Send(1�, τ ′). Let NoHide denote the event the hiding prop-
erty of COM is broken, we have |Pr0[Succ] − Pr1[Succ]| ≤ Pr1[NoHide] since
Game 0 and Game 1 are identical until NoHide occurs.

Game 2 is just a bridging step. We simulate the embedded-token encryption
oracle with the underlying encryption oracle of SKE but not τ ′. Nevertheless, we
can view the encryption oracle of SKE is using some random key following the
same distribution as τ ′. We have Pr2[Succ] = Pr1[Succ] and |Pr2[Succ]| = ε+ 1

2 ,
where ε is the advantage of any PPT breaking the CPA-security of SKE.

Putting everything together, we have |Pr0[Succ] − 1
2 | ≤ |Pr0[Succ] −

Pr1[Succ]| + |Pr1[Succ] − 1
2 | = |Pr0[Succ] − Pr1[Succ]| + |Pr2[Succ] − 1

2 | ≤
Pr1[NoHide] + ε.

6.3 Strong Existential Token Unforgeability

An adversary breaking the strong existential token unforgeability is supposed
to output a ciphertext c, two different delegated tokens dec and dec′ such that
(TCE.Dec(dk,dec)(C)=m)∧(TCE.Dec(dk,dec′)(C)=m′) where (m �= m′)∧(m �=⊥)
∧ (m′ �=⊥). The simulator uses the knowledge of dk to get com from c, and can
break the binding property of COM by simply outputting (com, dec, dec′).

The reason why this output breaks the binding property of COM is as follows.
Since ⊥ is not returned by the decryption algorithm, the first two requirements
Rec(1�, com, dec) �=⊥ and Rec(1�, com, dec′) �=⊥ hold. Let τ = Rec(1�, com, dec),
τ ′ = Rec(1�, com, dec′), and assume to the contrary that τ = τ ′. Note that in
the decryption algorithm, σ ← PKE.Decdk(c) is independent of whether dec or
dec′ is used. With the same τ and same σ, SKE.Decτ (σ) must return the same
message, contradiction occurs; so τ �= τ ′, satisfying the last requirement.

6.4 Concrete Instantiation

Any pseudorandom function family (PRF) is sufficient to build a CPA-secure
secret key encryption scheme, and commitment scheme can be built solely us-
ing collision-free hashing [16]. Both PRF and collision-free hash function are
basic cryptographic primitives and are very efficient. For CCA-secure public key
encryption in the standard model, one can employ Cramer-Shoup encryption
scheme [9], which is secure in the multi-user setting as defined in [3].

In our construction, the delegated token for the decryption is a decommitment
string. If we use SHA-256/224 or SHA-512/384 to instantiate the collision-free
hash function of the commitment scheme, and takes the decommitment space as
a single data block of the hash, the token size is 512 or 1024 bits respectively.

7 Concluding Remarks

This work performs a comprehensive study of token-controlled public key encryp-
tion (TCE), a cryptographic primitive that offers many possibilities of application
in financial or legal scenario, e.g. rapid distribution of confidential information.
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For applications, we contrast the differences between TCE and timed-release
encryption (TRE), and discuss many scenarios where TCE is useful. From a
theoretical aspect, we generalize and strengthen the existing notion; for example,
a partial decryption oracle is available to the adversary. We also address the
privacy issues related to a malicious SEM by introducing the notion of release-
condition confidentiality and ciphertext unlinkability.

We also show that the only existing scheme with token unforgeability [15] is
insecure against insider attack in their definition, and insecure against outsider
attack in our new definition. In view of this, we give a secure yet simple and
efficient construction in the standard model.

Our generic construction, taking components of different security level, yields
TCE with different security properties. Below we give two possible variants.
The first achieves strong insider indistinguishability (i.e. embedded-token de-
cryption oracle is provided). Such a scheme can be built from a stateless se-
cret key encryption secure against adaptive chosen ciphertext attack (CCA) [12],
with Dodis and Katz’s technique for achieving CCA security of multiple encryp-
tion [13].

The second one considers “related message attack” [3], such that the adver-
sary has an access of a “left-or-right” encryption oracle [3] for different public
keys/tokens (our notion considered encrypting the same message under differ-
ent public keys), which models the scenario where an attacker can see the ci-
phertext of related messages. To achieve this we require public key encryption
scheme [3] and secret key encryption scheme [4] that are secure in a multi-user
setting.

There are still a lot of research problems in this area. For example, there
is no known TRE without pairings or random oracles. Although it has been
shown in [6] that certificateless public key encryption (CLE) does not imply
TRE, their similar settings make it worthwhile to see if any technique in con-
structing CLE (e.g. [1], [7]) is helpful. On the other hand, improving the security
or efficiency of TCE, and finding more novel applications of TCE, are equally
interesting.
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Abstract. We define new algorithmic problems and discuss their prop-
erties (in particular, we present a careful study of their computational
complexity). We apply the new problems to design public key encryption
protocols with semantic security relative to their decisional variants. We
then show how to provide efficient schemes that are semantically secure
under adaptive chosen ciphertext attacks in the random oracle model.
Finally, we show that the ideas developed in this extended abstract can
be used to design the most efficient known cryptosystem with semantic
security under non-adaptive chosen ciphertext attacks in the standard
security model.
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1 Introduction

This paper describes new algorithmic problems using trapdoor permutation
polynomials of Z/nZ and new constructions of semantically secure public key
cryptosystem based on these problems, relative to different scenarios of attacks.

Background. A trapdoor permutation is a one-to-one function f that anyone
can compute efficiently; however, inverting f is hard unless some “trapdoor”
information is also given. Naively, a trapdoor permutation defines a simple public
key encryption scheme: the description of f is the public key and the trapdoor
is the secret key.

In 1978, Rivest, Shamir, and Adleman proposed the first candidate trapdoor
permutation [24]. The RSA setup consists of choosing two distinct large prime
� This work was done while this author was a postdoctoral fellow in the Computer

Security group of the Bonn/Aachen International Center for Information Technology.

J. Garay et al. (Eds.): ISC 2007, LNCS 4779, pp. 333–350, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



334 G. Castagnos and D. Vergnaud

numbers p and q, and computing the RSA modulus n = pq. The public key is n
together with an exponent e (relatively prime to ϕ(n) = (p−1)(q−1)). The secret
key d is defined to be the multiplicative inverse of e modulo ϕ(n). Encryption
and decryption of a message in (Z/nZ)× are defined as follows: E(m) = me

mod n and D(c) = cd mod n. Hence, the encryption function is an evaluation
of the polynomial Xe of Z/nZ[X ] and the decryption is performed with the
polynomial Xd.

In 1993, in [12], Demytko has suggested to replace the monomial Xe by divi-
sion polynomials of “elliptic curves” defined over the ring Z/nZ. The same year,
Smith and Lennon [26] have proposed a system, LUC, which uses a special type
of Lucas sequences. The encryption and decryption functions can also be seen
as an evaluation of a polynomial of Z/nZ[X ], a Dickson polynomial (cf. [19]).
As a consequence, the LUC cryptosystem is very similar to a system already
proposed by Müller and Nöbauer (cf. [20,21]).

The security goal for a public key encryption scheme is to guarantee that no
partial information about a plaintext message is revealed from its ciphertext, a
notion often called semantic security or indistinguishability of ciphertexts [15].
Unfortunately, the naive public key system built from the three mentioned trap-
door functions is deterministic and hence cannot achieve this security notion.
Under a slightly stronger assumption than the intractability of the integer fac-
torization, these primitives give a cryptosystem that is only One-Way under
Chosen-Plaintext Attacks (a very weak level of security). The main purpose of
the present paper is to propose new combinations of these three polynomial
functions giving rise to semantically secure public key cryptosystem.

Several models of attacks have been defined. An encryption scheme that
is semantically secure under a Chosen-Plaintext Attack (resp. a non-Adaptive
Chosen-Ciphertext Attack, resp. an Adaptive Chosen-Ciphertext Attack) is said
to be IND-CPA secure (resp. IND-CCA1 secure, resp. IND-CCA2 secure). In [2],
it is shown that IND-CCA2 is strictly the strongest notion of semantic security,
IND-CCA1, the intermediary notion, and IND-CPA strictly the weakest. Indis-
tinguishably against Chosen-Ciphertext attack is considered to be the correct
notion of security for general-purpose public key encryption schemes.

Contributions of the paper. In this paper, we present new algorithmic prob-
lems (in section 2, after some notations). Then, in section 3, we give some argu-
ments to validate the cryptographic purpose of those problems, with a careful
study of their difficulty and their relations. It is possible to apply the new prob-
lems to design public key encryption protocols with semantic security (IND-CPA)
relative to the decisional variant of them. This is done in section 4. We then show,
in section 5, how these schemes can also be made IND-CCA2 secure assuming
the intractability of our decisional RSA variants by using well-known techniques
(in the random oracle model [5]). Finally, in section 6, we explain how the ideas
developed in this extended abstract can be used to design encryption schemes
with higher security in the standard model: for instance, we show that it is pos-
sible to construct the most efficient known IND-CCA1 secure cryptosystem with
security analysis in the standard model.
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2 Permutation Polynomials and New Algorithmic
Problems

2.1 Notations

Let A be a probabilistic Turing machine running in expected polynomial time
(a PPT, for short), and let x be an input for A. The probability space that
assigns to a string σ the probability that A, on input x, outputs σ is denoted
by A(x). Given a probability space S, a PPT that samples a random element
according to S is denoted by x R←− S. For a finite set X , x R←− X denotes a PPT
that samples a random element uniformly at random from X . We will use poly
and negl to denote respectively unspecified polynomial any negligible1 functions.

For any integer k≥2, we denote Primes(k)={p ∈ N, 2k < p < 2k+1, p is prime}
and 2Factor(k) = {n ∈ N, n = pq, with p < q < 2p and p, q ∈ Primes(k)}. For
n ∈ N, ϕ(n) = #(Z/nZ)× denotes the Euler totient value of n.

For two algorithmic problems A and B, we denote A P⇐= B whenever A is
polynomial-time reducible to B, and A ∧ B the problem of solving together A
and B.

2.2 RSA and LUC

Let k ≥ 2, n = pq ∈ 2Factor(k) and e be an integer relatively prime to ϕ(n).
It is well-known that the polynomial Xe of Z/nZ[X ] induces a permutation
of (Z/nZ)×. The RSA encryption corresponds to an evaluation of this polyno-
mial. Moreover, this polynomial has a trapdoor: knowing d such that ed ≡ 1
mod ϕ(n) allows one to invert the evaluation of this polynomial at any point.

Another permutation polynomial is the LUC function used in the system
of [26]. Given two integers a and b such that a2 − 4b is a non-square, the Lucas
sequence V is given by a second-order linear recurrence relation:

∀k � 1, Vk+1(a, b) = aVk(a, b)− bVk−1(a, b), V1(a, b) = a, V0(a, b) = 2.

Let e be an integer relatively prime to (p2 − 1)(q2 − 1). The LUC function, x #→
Ve(x, 1) (mod n), is a permutation of the set {x ∈ N, 0 < x < n, gcd(x, n) =
1, gcd(x2 − 4, n) = 1}, whose inverse is x #→ Vd(x, 1) (mod n), where d is the
multiplicative inverse of e modulo (p2−1)(q2−1) (see [6] for more details on the
LUC function). One can see that Ve(X, 1) is in fact a polynomial of degree e,

Ve(X, 1) =
e/2�∑
i=0

e

e− i

(
e− i

i

)
Xe−2i,

which is a special type of Dickson polynomial (cf. [19]) and, for that reason, a
permutation polynomial.

1 I. e., ∀c ≥ 0, ∃Kc ∈ N, ∀k ∈ [[Kc, +∞[[, negl(k) ≤ k−c.
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These two polynomials of degree e derived from the RSA and LUC cryptosys-
tems can be evaluated at low cost. If we denote |e| the size of e in bits, the
evaluation of the RSA polynomial needs (3/2)|e| multiplications modulo n on
the average, with the square and multiply algorithm, and 2|e| multiplications are
needed for the evaluation of the LUC polynomial, using the algorithm of [17].

In the following, we combine these two polynomials to define new algorithmic
problems and build new systems. We will define our new problems in a gen-
eral setting, by considering arbitrary permutation polynomials of (Z/nZ)×. The
study will be identical as if we were working directly with the RSA and LUC
polynomials except for one thing: as the RSA polynomial induces a morphism of
(Z/nZ)× some extra reductions will be possible. Consequently, this specific case
of polynomial Q such that Q(xy) = Q(x)Q(y) for all elements x, y of (Z/nZ)×

will be considered in the study of our problems.

Remark 1. In order to design cryptosystems, one can also follow the ideas of
Schwenk and Huber (cf. [25]), and use more general permutation polynomials
for which the inverse function is not explicit.

2.3 Permutation Polynomials and Pointwise Inversion

In this paragraph, we define the problem of pointwise inversion of an arbitrary
permutation polynomial (PP).

Definition 1. A PP generator is a PPTM that takes a security parameter k
as input and outputs a 4-tuple (n, p, q, P ) where n = pq ∈ 2Factor(k) and
P ∈ Z/nZ[X ] is a permutation of (Z/nZ)× which can be evaluated at any value
of (Z/nZ)× in polynomial time in k. Let e : N −→ N. A PP generator Gen is said
to be a PP generator of degree e if for any k ∈ N and any (n, p, q, P )← Gen(k),
deg(P ) ≤ e(k).

The next definition quantifies the resistance to pointwise inversion for PP gen-
erators (i. e., the problem: given α = P (a) ∈ (Z/nZ)×, compute a ∈ (Z/nZ)×

denoted P−1(n)).

Definition 2. Let Gen be a PP generator. Let A be a PPTM that takes as input
a triple (n, P, y) ∈ N×Z/nZ[X ]×(Z/nZ)× and outputs an element x ∈ (Z/nZ)×.
We consider the following random experiments, where k is a security parameter:

Experiment ExpP−1

Gen,A(k)

(n, p, q, P ) R←− Gen(k)
y

R←− (Z/nZ)×

x← A(n, P, y)
Return 1 if P (x) = y, 0 otherwise

The success of A in solving the pointwise inversion problem is

SuccP−1

Gen,A(k) = Pr[ExpP−1

Gen,A(k) = 1].
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Let τ be an integer and ε a real in [0, 1]. Gen is said to be (k, τ, ε)-P−1-secure if
no adversary A running in time τ has success SuccP−1

Gen,A(k) ≥ ε.

2.4 Permutation Polynomials and Polynomial Diffie-Hellman
Problem

Definition 3. A PDH generator is a PPTM that takes a security parameter
k as input and outputs a 5-tuple (n, p, q, P,Q,R) where n = pq ∈ 2Factor(k),
P ∈ Z/nZ[X ] and Q ∈ Z/nZ[X ] are permutations of (Z/nZ)× which can be
evaluated at any value of (Z/nZ)× in polynomial time in k and R ∈ Z/nZ[X,Y ]
is a bivariate polynomial which can be evaluated at any value of (Z/nZ)×2 in
polynomial time in k. Let eP : N −→ N, eQ : N −→ N and eR : N −→ N. A PDH
generator Gen is said to be a PDH generator of degree (eP , eQ, eR) if for any
k ∈ N and any (n, p, q, P,Q,R) ← Gen(k), deg(P ) ≤ eP (k), deg(Q) ≤ eQ(k),
degX(R) ≤ eR(k).

We now define a new family of algorithmic problems: the computational polyno-
mial Diffie-Hellman problems that generalizes the pointwise inversion problem:

Computational Polynomial DH: C-POL-DH(n, P,Q,R)
Given: α = P (a) ∈ (Z/nZ)× and β = Q(b) ∈ (Z/nZ)×;
Find: R(a, b) ∈ (Z/nZ)×.

The problem is named after the Diffie-Hellman key exchange [13] because
of its similarity with it in the special case where Q = P and R(X,Y ) =
P (XY ). In this paper, we deal only with the cases R(X,Y ) = XY , R(X,Y ) =
P
(
(XY )�

)
and R(X,Y ) = Q(X) that we denote respectively C-POL1(n, P,Q),

C-POL2(n, 
, P,Q) and C-DPOL(n, P,Q).
The next definition quantifies the resistance to the computational polynomial

Diffie-Hellman problems for PDH generators.

Definition 4. Let Gen be a PDH generator. Let A be a PPTM that takes as
input a 6-tuple (n, P,Q,R, y, z) ∈ N×Z/nZ[X ]2 ×Z/nZ[X,Y ]× (Z/nZ)×2 and
outputs an element z ∈ (Z/nZ)×. We consider the following random experi-
ments, where k is a security parameter:

Experiment ExpC-POL-DH
Gen,A (k)

(n, p, q, P,Q,R) R←− Gen(k)
y

R←− (Z/nZ)×, y′ R←− P (y)
z

R←− (Z/nZ)×, z′ R←− Q(z)
x← A(n, P,Q,R, y′, z′)
Return 1 if x = R(y, z), 0 otherwise

The success of A in solving the computational polynomial DH problem is

SuccC-POL-DH
Gen,A (k) = Pr[ExpC-POL-DH

Gen,A (k) = 1].

Let τ be an integer and ε ∈ [0, 1]. Gen is said to be (k, τ, ε)-C-POL-DH-secure if
no adversary A running in time τ has success SuccC-POL-DH

Gen,A (k) ≥ ε.
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Now, we define the decision problem D-POL-DH(n, P,Q,R) where an element
from (Z/nZ)× is given and the algorithm has to decide whether it is a valid
candidate for the C-POL-DH(n, P,Q,R) problem.

Decision Polynomial DH: D-POL-DH(n, P,Q,R)
Given: α = P (a) ∈ (Z/nZ)×, β = Q(b) ∈ (Z/nZ)× and γ ∈ (Z/nZ)×;
Decide whether: γ = R(a, b).

We define three decision problems D-POL1(n, P,Q), D-POL2(n, 
, P,Q) and
finally D-DPOL(n, P,Q) for the cases R(X,Y ) = XY , R(X,Y ) = P

(
(XY )�

)
and R(X,Y ) = Q(X) (respectively).

Remark 2. The D-DPOL(n, P,Q) decision problem can be rewritten (the same
holds for the computational problem) as follows: given P (a) and γ ∈ (Z/nZ)×

decide whether γ = Q(a). Hence, the C-DPOL(n, P,Q) and D-DPOL(n, P,Q)
problems are generalisations of the Dependent-RSA problems defined in [23].

3 Relations Among the New Problems

In this section, we discuss the problems defined in the previous section with
a careful study of both their difficulty and their relations. For clarity reasons,
when the reductions are simple, the theorems are stated with less formalism than
the definitions of the previous section. Throughout this section, for a security
parameter k, n, P and Q will correspond to the output of a PDH generator on
input k. For short, we will denote ep and eq the degrees of P and Q.

We define an extraction problem, E-POL-DH(n, P,Q,R): Given P (a), Q(b)
and R(a, b), find a and b. We denote as before E-POL1, E-POL2, E-DPOL the
extraction problems for the special values of R.

We first study the C-POL1 and C-POL2 classes of problems, then we will
analyse the C-DPOL class of problem and finally the relation between these
three classes.

3.1 The C-POL1 and C-POL2 Problems

For the C-POL1 problem, we have the straightforward theorem:

Theorem 1. D-POL1(n, P,Q) P⇐= C-POL1(n, P,Q) P⇐⇒ P−1(n) ∧Q−1(n).

Proof. All the reductions follow from the definition of the C-POL1(n, P,Q) prob-
lem except C-POL1(n, P,Q) P=⇒ P−1(n)∧Q−1(n). Suppose that we know P (a)
and we want to compute a. We choose a random b in (Z/nZ)× and we give the
value P (a) and Q(b) to an oracle for C-POL1(n, P,Q) which gives the value ab
in reply, so we can recover b. We can invert Q with a symmetric process. ��

For the C-POL2 problem, we use the extraction problem to state a similar
theorem.
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Theorem 2. For an RSA integer n, and two permutation polynomials P and
Q of (Z/nZ)×,

C-POL2∧E-POL2 P⇐⇒ P−1 ∧Q−1 P=⇒ C-POL2
E-POL2

P=⇒ D-POL2 . ��

We now examine the difficulty of the decision problems.

Difficulty of D-POL1 and D-POL2. The best known way to solve these
problems is to solve the corresponding extraction problem (cf. [8]). We know
the values of P (a), Q(b) and R(a, b) and we want to find the values of a and b.
Suppose that eQ � eP (else the attack is done with the symmetric method). We
compute the resultant with respect to the variable Y :

S(X) = Res
Y

(R(X,Y )−R(a, b), Q(Y )−Q(b)).

This gives a polynomial S(X) of degree eReQ with S(a) = 0, so

(X − a) | gcd(S(X), P (X)− P (a)).

In fact, in many cases2, we will have (X − a) = gcd(S(X), P (X) − P (a)), and
this method allows to recover a. If we are trying to solve the E-POL1 problem
we know ab, so we have also recovered b. Else, for the E-POL2 problem, we can
recover b by computing gcd(R(a, Y )−R(a, b), Q(Y )−Q(b)).

Remark 3. In the previous description, “the” resultant and “the” gcd of two
polynomials with coefficients in Z/nZ are understood as the results of the clas-
sical algorithms (described in [14] for instance) which compute the resultant
and the gcd of polynomials over a field. In the unlikely event, that a non-trivial
factor of n appears during this computation, the adversary simply aborts the
computation and uses this knowledge to solve the instance of its problem.

The resultant can be computed with O(e2ReQ log2(eReQ) log log(eReQ)) opera-
tions in Z/nZ, according to [14, Corollary 11.18, p. 310]. Note that eR = 1 for
E-POL1 and eR = 
eP for E-POL2, so, if 
 is large enough, this method will be
infeasible even if eP is small.

According to [14, Corollary 11.6, p. 304], the computation of the first gcd can
be done inO(e log2 e log log e) operations in Z/nZ, where e = max(eReQ, eP ) and
the computation of the second gcd in O(e log2 e log log e) operations in Z/nZ,
where e = max(eR, eQ). This complexity of attacks on the extraction problems
will be used in the next section to set key sizes for the cryptosystems that we
will built.

Now, suppose that the polynomial Q induces a morphism of (Z/nZ)× (in
particular, if Q is associated to the RSA function). In this case, it is possible to
make another reduction from Q−1(n) to C-POL2(n, 
, P,Q) when 
 = 1.
2 Some experimentations confirm that, but, we have not been able to prove this fact.

Note that in [8,23] a similar fact is stated, without proof. Anyway, as our goal is to
estimate the size of the degrees to make our cryptosystems secure, only the possibility
of an attack matters.
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Theorem 3. Let eP : N −→ N, eQ : N −→ N and eR : N −→ N and let Gen
be a PDH generator of degree (eP , eQ, eR). Suppose that, for any k ∈ N and
any (n, p, q, P,Q,R) ∈ Gen(k), Q is a morphism of (Z/nZ)× and P is not a
polynomial in X i for any i > 1. Let τ ∈ NN, ε ∈ [0, 1]N and A be an adversary
that (k, τ(k), ε(k))-solves the C-POL2(n, 1, P,Q) problem for any integer k ∈ N.
There exists an algorithm B that (k, τ ′(k), ε′(k))-solves the Q−1(n) problem such
that

ε′ ≥ εeP − negl and τ ′ ≤ eP · τ + e3P · poly.

Proof. The algorithm A takes as input an instance of the C-POL2(n, 1, P,Q)
problem: for any k ∈ N, given (n, p, q, P,Q,R) ∈ Gen(k), P (a) and Q(b) in
(Z/nZ)×, he will return P (ab) ∈ (Z/nZ)× in time at most τ(k) with probability
at least ε(k).

Let I be the subset of {1, . . . , eP (k)} of cardinality m > 1 such that P (X) =∑
i∈I piX

i, where all the (pi)i∈I are non-zero elements of (Z/nZ)×. Since P is
not a polynomial in X i for any i > 1, the gcd of I is equal to 1.

Given an element Q(b) ∈ (Z/nZ)×, the algorithm B will recover b. It starts by
choosing randomly m couples (sj , tj) ∈ (Z/nZ)××(Z/nZ)×, with j ∈ {1, . . . ,m}
so that all the sj and the tj with j ∈ {1, . . . ,m} are distinct.

For each j ∈ {1, . . . ,m}, B gives the values P (sj) and Q(btj) = Q(b)Q(tj) to
the algorithm A which returns the value of P (sjtjb) with probability at least
ε(k)m (since the m queries are independent). After these queries, B gets the m
equations: ∑

i∈I
pi(sjtj)ibi = P (sjtjb), for j ∈ {1, . . . ,m}

with the m unknowns (bi)i∈I . If we denote I := {i1, i2, . . . , im}, with 0 < i1 <
i2 < · · · < im = eP , the system of equations is associated with the following
matrix:

M :=

⎡⎢⎣ pi1(s1t1)i1 pi2(s1t1)i2 · · · pim(s1t1)im

...
...

...
pi1(smtm)i1 pi2(smtm)i2 · · · pim(smtm)im

⎤⎥⎦
The method successes if det(M) ∈ (Z/nZ)×. We focus on the study of

det(M) �= 0 (another value of (Z/nZ) \ (Z/nZ)× will reveal the factorisation
of n).

We have

det(M) =

⎛⎝ m∏
j=1

pijc
i1
j

⎞⎠
∣∣∣∣∣∣∣
1 ci2−i1

1 · · · cim−i1
1

...
...

...
1 ci2−i1

m · · · cim−i1
m

∣∣∣∣∣∣∣
where cj := sjtj for j = 1, . . . ,m. This last determinant, D, is a generalized
Vandermonde determinant. One can see that

D =

⎛⎝ ∏
1≤i<j≤m

(cj − ci)

⎞⎠T (c1, c2, . . . , cm),
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where T is a polynomial of degree im − i1 −m+ 1 in cm (see [11], for example,
for details on this polynomial). So, if all the (cj)j=1,...,m are distinct, once all the
(sj)j=1,...,m, all the (tj)j=1,...,m−1 have been chosen, less than (im− i1−m+1)2

values of tm can make the method fail.
So with standard Gauss elimination, B can recover the (bi)i∈I with O(eP (k)3)

operations in Z/nZ and m independent queries to the oracle. As gcd(I) = 1,
there exists a linear combination of the elements of I that equals 1, therefore B
can recover b. ��

Remark 4. If 
 > 1, with the method used in the proof, we can only recover the
value of b�. Then, we can recover b by computing gcd(Q(Y )−Q(b), Y � − b�).

3.2 The C-DPOL Problem

As shown in Remark 2, the C-DPOL can be rewritten: Given P (a), find Q(a);
and the extraction problem, E-DPOL, can be rewritten: Given P (a) and Q(a),
find a. We then have the following (straightforward) theorem, that generalizes
([23], Theorem 3):

Theorem 4. Let Gen be a PDH generator. We have:

C-DPOL∧E-DPOL P⇐⇒ P−1 P=⇒ C-DPOL
E-DPOL

P=⇒ D-DPOL .

Now let’s try to solve the E-DPOL problem. We know the values of P (a) and
Q(a) and we want to compute the value of a. We have (X−a) divides gcd(P (X)−
P (a), Q(X) − Q(a)) and again, in many cases, we will have an equality. The
complexity of the computation of the gcd is O(e log2 e log log e) operations in
Z/nZ, where e = max(eQ, eP ). If eQ and eP are greater than, say 260, this
method will fail. This method for solving E-DPOL problem allows to break
the D-DPOL problem. In conjunction with Theorem 4, this method also leads
to a reduction from the P−1(n) problem to the C-DPOL(n, P,Q) problem in
O(e log2 e log log e) operations in Z/nZ.

Again, suppose that the polynomial P induces a morphism of (Z/nZ)×: we
can also make another reduction from C-DPOL(n, P,Q) to P−1.

Theorem 5. Let eP : N −→ N, eQ : N −→ N and eR : N −→ N and let Gen
be a PDH generator of degree (eP , eQ, eR). Suppose that, for any k ∈ N and
any (n, p, q, P,Q,R) ∈ Gen(k), P is a morphism of (Z/nZ)× and Q is not a
polynomial in X i for any i > 1. Let τ ∈ N

N, ε ∈ [0, 1]N and A be an adversary
that (k, τ(k), ε(k))-solves the C-DPOL(n, P,Q) problem for any integer k ∈ N.
There exists an algorithm B that (k, τ ′(k), ε′(k))-solves the P−1(n) problem such
that

ε′ ≥ εeQ − negl and τ ′ ≤ eQ · τ + e3Q · poly. ��

The proof is analogous to that of Theorem 3.
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3.3 Relations Among the Three Classes of Problems

It is trivial to see that for all 
 ≥ 1,

C-POL1(n, P,Q) P=⇒ D-POL1(n, P,Q)
⇓ P ⇑ P

C-POL2(n, 
, P,Q) P=⇒ D-POL2(n, 
, P,Q)

In the special case where the polynomial P induces a morphism of
(Z/nZ)×, as P ((ab)�) = P (ab)� and P (ab) = P (a)P (b), we have the following
theorem.

Theorem 6. If P induces a morphism of (Z/nZ)×,

C-POL2(n, 
, P,Q) P⇐= C-POL2(n, 1, P,Q) P⇐⇒ C-DPOL(n,Q, P ),

D-POL2(n, 
, P,Q) P=⇒ D-POL2(n, 1, P,Q) P⇐⇒ D-DPOL(n,Q, P ). ��

In fact the idea of the proof of the previous theorem can be used to make
a reduction from D-POL1(n, P,Q) to D-DPOL(n, P,Q) if Q is a morphism.
Suppose that we know the values of P (a) and Q(b) and that we want to decide
if an element c equals ab. If this is the case, Q(c) = Q(a)Q(b). So we can submit
P (a) and Q(c)/Q(b) to an oracle of the D-DPOL(n, P,Q) problem to solve the
D-POL1(n, P,Q) problem.

As D-DPOL(n,Q, P ) P⇐⇒ D-DPOL(n, P,Q), we have proved the following
theorem:

Theorem 7. If P or Q induces a morphism of (Z/nZ)×,

D-POL1(n, P,Q) P⇐= D-DPOL(n, P,Q). ��

4 IND-CPA-Secure Public Key Cryptosystems

Let f be a trapdoor permutation and g be another function with the following
pseudo-randomness property: the distribution of (f(k), g(k)) induced by a ran-
dom k cannot be distinguished (by a polynomially bounded adversary) from a
randomly distributed (f(k), r). Then the encryption E(m) = (f(k), g(k)⊕m) is
semantically secure (cf. [23,7]). In this section, we revisit this approach by using
for the function g a trapdoor permutation.

Following this paradigm, we define three new encryption schemes where the
public key is (n, P,Q) or (n, P,Q,R) and the corresponding secret key is P−1

or (P−1, Q−1), with the notations of the previous section (i. e., n, P , Q, R
correspond to the output of a PDH generator for a given security parameter).
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To encrypt a message m ∈ (Z/nZ)×, a user picks at random r ∈ (Z/nZ)× (or
(r0, r1) ∈ (Z/nZ)×2) and uses one of the three following encryption functions:

Function 1: (m, r0, r1) #→
(
P (r0), Q(r1),mR(r0, r1)

)
Function 2: (m, r) #→

(
P (r),mQ(r)

)
Function 3: (m, r) #→

(
P (mr), Q(r−1)

)
To decrypt, a user uses his knowledge P−1 or (P−1, Q−1) to recover r or

(r0, r1) then m.

Theorem 8. The previous schemes are One-Way and semantically secure under
Chosen Plaintext Attack relative to the following problems:

Encryption function One-Wayness Semantic security

Function 1, R(X,Y ) = XY C-POL1(n, P,Q) D-POL1(n, P,Q)

Function 1, R(X,Y ) = P
(
(XY )�

)
C-POL2(n, 
, P,Q) D-POL2(n, 
, P,Q)

Function 2 C-DPOL(n, P,Q) D-DPOL(n, P,Q)

Function 3 C-POL1(n, P,Q) D-POL1(n, P,Q)(∗)

(∗) If P or Q is a morphism.

Proof (Sketch). For the first three schemes, the proof relies on the analysis done
in [7]. The fourth encryption scheme mixes the one-time-pad masking approach
used above with the trapdoor property of the function induced by P . The se-
mantic security of this scheme can be rewritten: there is no polynomial algo-
rithm that can choose a value m ∈ (Z/nZ)× and then recognize the couples
(P (a), Q(b)) ∈ (Z/nZ)× × (Z/nZ)×, satisfying ab = m. It’s easy to see that if
P or Q is a morphism, this assertion is equivalent to the intractability of the
D-POL1(n, P,Q) decision problem. ��

Efficiency considerations. From the encryption functions above, we design
five practical cryptosystems, three with Function 1, by setting R(X,Y ) = XY ,
R(X,Y ) = P (XY ) and R(X,Y ) = P

(
(XY )� with 
 > 1; one with Function 2;

and one with Function 3.
For the polynomial P we use the LUC polynomial Ve(X, 1) and for the poly-

nomial Q, the RSA polynomial of the same degree, i. e., Q(X) = Xe. In order
to compare the efficiency of these schemes, we use an RSA modulus of 1024 bits
and we adjust the parameter e (and 
) in order to achieve a 280 security. For this,
we use Theorem 8 and the analysis done in Section 3. These new cryptosystems
and the corresponding values of the parameters are given in the following table.
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Scheme Ciphertext Public keys

Scheme 1 Ve(ro, 1), r1e,mr0r1 e = 267 + 3.

Scheme 2 Ve(ro, 1), r1e,mVe(r0r1) e = 223 + 9.

Scheme 3 Ve(ro, 1), r1e,mVe

(
(r0r1)�

)
e = 5 and 
 = 231 + 65

Scheme 4 Ve(r, 1),mre e = 267 + 3.

Scheme 5 Ve(mr, 1), r−e e = 267 + 3.

Now, we compare the concrete efficiency of our new schemes with the one
from [7,23]. For the D-RSA scheme of [23] we use e = 267 +3 and for the scheme
of Catalano et al. ([7]), we use e = 216 + 1. The unity of complexity is the cost
of a multiplication modulo n. We use the following estimations: a multiplication
modulo n2 costs as much as three multiplications modulo n, an inversion costs
10 multiplications, a multiplication modulo p costs 1/3 multiplication modulo
n and a multiplication modulo p2 costs one multiplication modulo n. We use
the Chinese Remainder Theorem for the decryption process of all schemes. The
comparison is done in the following table.

Scheme D-RSA Catalano Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5

Input 1024

Output 2048 3072 2048

Encryption 139 52 205 119 44 204 214

Decryption 567 570 1204 1234 1228 736 1196

One can remark that the new cryptosystems appear to be quite practical. If
the decryption phase of these schemes (except Scheme 4) suffers from the cost
of the simultaneous inversions of the LUC and RSA function, the encryption
process is very fast and Scheme 3 (which is an improvement of Scheme 2) can
encrypt faster than the D-RSA and Catalano et al. cryptosystems. Schemes 1
and 5 have a similar complexity and are the most efficient semantically secure
cryptosystems with One-Wayness proved equivalent to the problem of inverting
simultaneously RSA and LUC.

5 IND-CCA2-Secure Public Key Cryptosystems in the
ROM

In this section, we apply standard techniques to obtain chosen ciphertext se-
curity (from these new primitives) in the random oracle model formalized by
Bellare and Rogaway in 1993 [5], in which cryptographic protocols are designed
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and proved secure under the additional assumption that publicly available func-
tions that are chosen truly at random exist. These random oracles can only be
accessed in a black-box way, by providing an input and obtaining the corre-
sponding output. A similar method is used in [23] for instance.

Let h be a cryptographic hash function (seen like a random oracle). With
the previous notations, the public key is now (n, P,Q, h) or (n, P,Q,R, h), and
the corresponding secret key is P−1 or (P−1, Q−1). To encrypt a message m of
(Z/nZ)×, a user picks at random r ∈ (Z/nZ)× (or (r0, r1) ∈ (Z/nZ)×2) and
uses one of the three following encryption functions:

Function 1: (m, r0, r1) #→ (P (r0), Q(r1),mR(r0, r1), h(m||r0||r1))
Function 2: (m, r) #→ (P (r),mQ(r), h(m||r))
Function 3: (m, r) #→ (P (mr), Q(r−1), h(m||r))

The decryption process is done as in Section 4 except that the message is
returned only if the hash value is correct.

Theorem 9. The previous schemes are semantically secure against Adaptive
Chosen Ciphertext Attack in the Random Oracle Model relative to the following
problems:

Encryption function Semantic security

Function 1, R(X,Y ) = XY D-POL1(n, P,Q)

Function 1, R(X,Y ) = P
(
(XY )�

)
D-POL2(n, 
, P,Q)

Function 2 D-DPOL(n, P,Q)

Function 3 D-POL1(n, P,Q)(∗)

(∗) If P or Q is a morphism.

Proof (Sketch). The proof is standard. The random oracle model is simulated in
the standard way and the instance of the decision problem is embedded in the
challenge ciphertext without updating the hash table. The hash table is used to
simulate the decryption oracle: when the adversary makes a decryption query,
the reduction looks in this table to get the pair (m, r) or the triple (m, r0, r1)
corresponding to the last element of the ciphertext. It returns the message m
only if the encryption of m with the value r or the pair (r0, r1) produces the
same ciphertext; otherwise, it returns the reject symbol.

The simulation of the random oracle is perfect and the probability that a
decryption query is incorrect is exponentially small in the size of the hash values.
Details can be found in [23], for instance. ��

Remark 5. As done in [23], it is also possible to modify our schemes in order to
make them IND-CCA2 in the random oracle model relative to the correspond-
ing computational problems. This transformation permits to use smaller degree
polynomials P and Q in the encryption procedure but unfortunately the result-
ing schemes are IND-CPA-secure only in the Random Oracle Model.
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6 IND-CCA1-Secure Public Key Cryptosystems in the
Standard Model

6.1 Damg̊ard’s Elgamal

Let G be an additive group of prime order q, let k be the bit size of the elements
of G and let P be a generator of G. In 1991, Damg̊ard [10] presented a simple
variant of the Elgamal encryption scheme in G. In his proposal, Alice publishes
two public keys A1 = [a1] · P and A2 = [a2] · P and keeps secret their discrete
logarithms a1 and a2. When Bob wants to send privately a message m ∈ {0, 1}k

to Alice, he picks uniformly at random an integer r ∈ [[1, q−1]] and transmits the
triple (Q1, Q2, C) where Q1 = [r] ·P , Q2 = [r] ·A1 and C = m⊕ ([r] ·A2). When
she receives the ciphertext (Q1, Q2, C), Alice checks whether the equality Q2 =
[a1]·Q1 holds: if it is the case, she retrieves the message m, as m = C⊕([a2]·Q1),
otherwise she rejects the ciphertext.

Damg̊ard proved that if the DDH problem is hard in G, then this scheme is
IND-CCA1-secure, if we assume the so-called knowledge-of-exponent assumption
[22]. Intuitively this assumption states that, without the knowledge of a1, the
only way to generate couples (Q1, Q2) ∈ G

2, satisfying Q2 = [a1] · Q1, is to
choose an integer r ∈ [[1, q − 1]] and to compute Q1 = [r] · P and Q2 = [r] ·A1.

The knowledge-of-exponent assumption is a strong and non-standard one, but
to date it has not been proven false. It has been criticized for assuming one can
perform “reverse engineering” of an adversary. It should therefore be considered
with caution, all the more since Bellare and Palacio [3] showed that a somehow
similar assumption used in [16] is false.

The function that maps r to ([r] · P, [r] · A1) is what Damg̊ard called a One-
Way function with sparse image (i. e., only a very small fraction of G

2 is in its
image and it seems computationally infeasible to sample an element of this set
without the knowledge of its preimage). Damg̊ard predicts that such One-Way
functions would be extremely useful in other contexts. His proposal has indeed
found applications in identification and zero-knowledge protocols ([3,4,1,16]),
but it has proved to be extremely difficult to find other examples that can be
reduced to reasonable assumptions. The purpose of the next paragraph is to
explain how our approach can be extended in order to propose such a function.

6.2 Knowledge of Preimage Assumption

Let Gen be a PDH generator. Suppose we are given (n, P1, P2, R, y, z) an ele-
ment of N × Z/nZ[X ]3 × N output by Gen and want to output a pair (x, y) of
((Z/nZ)×)2, such that P−1

1 (x) = P−1
2 (y). One way to do this is to pick some

a ∈ (Z/nZ)× and let x = P1(a) and y = P2(a). Intuitively, the knowledge of
preimage assumption (KPA) can be viewed as saying that this is the “only” way
to produce such a pair.

There are many ways in which the formulation can be varied to capture the
KPA. We will say that for any PPTM outputting a pair (P1(a), P2(a)), there is
an “extractor” than can return the preimage a. For our purposes, it is necessary
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to allow the adversary to be randomized as in [1] (in that case, it is important
that the extractor gets the coins of the adversary as an additional input, since
otherwise the assumption is clearly false).

Definition 5. Let Gen be a PDH generator and let A and A be two PPTM’s.
We consider the following random experiments, where k ∈ N is a security pa-
rameter:

Experiment Expkpa
Gen,A,A

(k)

(n, p, q, P1, P2, R) R←− Gen(k)
(x, y) r←− A(n, P1, P2)
α

r←− A(n, P1, P2)
Return 1 if (x, y) ∈ ((Z/nZ)×)2, ∃a ∈ (Z/nZ)× s.t.

(x, y) = (P1(a), P2(a)) and a �= α,
Return 0 otherwise

We define the advantage of A relative to A in these experiments via

Advkpa
Gen,A,A

(k) = Pr
[
Expkpa

Gen,A,A
(k) = 1

]
.

Let ε ∈ [0, 1]N,

1. A is a ε-kpa-extractor for A if for all positive integers k,

Advkpa
Gen,A,A

(k) ≤ ε(k) .

2. We say that the knowledge-of-preimage assumption holds for Gen if for every
PPTM A, there exists a PPTM A and a negligible function ε such that A
is a ε-KPA-extractor for A.

3. We say that the strong knowledge-of-preimage assumption (SKPA) holds for
Gen if there exists a PPTM E such that for every PPTM A, there exists a
negligible function ε such that E is a ε-KPA-extractor for A.

6.3 New Construction

Following Damg̊ard’s technique, we define a new encryption scheme where the
public key is (n, P1, P2, Q) where P1, P2 and Q are One-Way permutations
of (Z/nZ)× and the corresponding secret key is P−1. To encrypt a message
m ∈ (Z/nZ)×, a user picks at random r ∈ (Z/nZ)× and uses the following
encryption function:

Function 1: (m, r) #→
(
P1(r), P2(r),m ·Q(r)

)
When he receives a ciphertext (x, y, C), a user uses his knowledge of P−1 to

check whether the equality P2(P−1
1 (x)) = y holds: if it is the case, he retrieves

the message m, as m = C/Q(P−1
1 (x)), otherwise he rejects the ciphertext.
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Theorem 10. The previous schemes is One-Way and semantically secure under
non-adaptive Chosen Ciphertext Attack relative to the following problems:

Encryption function One-Wayness Semantic security

Function 1 C-DPOL(n, P1, Q) D-DPOL(n, P1, Q) under SKPA

Proof (Sketch). Theorem 8 insures that this scheme is one-way assuming the
intractability of the C-DPOL(n, P1, Q) problem and semantically secure under
chosen-plaintext attacks if the D-DPOL(n, P1, Q) problem is intractable. Fol-
lowing [4], it is straightforward to see that the scheme is plaintext-aware (PA1)
assuming the strong knowledge of preimage assumption and Theorem 1 from this
paper implies that our new scheme is IND-CCA1-secure if the D-DPOL(n, P1, Q)
problem is intractable and the strong knowledge of preimage assumption holds
for the underlying PDH generator. ��

If one sets P1(X) = Xe, P2(X) = (X+1)e and Q(X) = (X+2)e with sufficiently
large e in order to make the D-DPOL problem infeasible in reasonable time (see
the analysis of subsection 3.2 and section 4) one obtains an IND-CCA1-secure
system faster than the one of Damg̊ard.

7 Conclusion

We have defined new algorithmic problems, derived from the RSA assumption,
and discuss their computational difficulty. We have applied them to design pub-
lic key encryption protocols with IND-CPA-security and IND-CCA2-security in
the random oracle model under the assumption of the intractability of their
decisional variants.

The ideas developed in this extended abstract can be used to design encryption
schemes with higher security. For instance, by using the approach proposed by
Cramer and Shoup in [9], we have been able to design a concrete encryption
scheme that is proven IND-CCA2-secure in the standard model based on the
difficulty of the new algorithmic problems. Details will appear elsewhere.
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Abstract. At Asiacrypt 2002, Katz and Yung presented two threshold
cryptosystems based on factoring, a threshold version of Goldwasser-
Micali’s probabilistic encryption assuming that p = q = 3 mod 4, and
a threshold Rabin signature scheme assuming that p = 3 mod 8 and
q = 7 mod 8. In this paper, we show a generalized condition on p and
q to obtain a threshold version of Goldwasser-Micali, and a threshold
Rabin-type signature scheme due to Kurosawa and Ogata [7] for p =
q = 3 mod 4 and

p + 1

4
=

q + 1

4
mod gcd(p − 1, q − 1).

Note that our set of (p, q) is disjoint from that of Katz-Yung threshold
Rabin signature scheme.

Keywords: Threshold signatures, threshold decryption, Goldwasser-
Micali, Rabin, cryptography.

1 Introduction

Katz and Yung [8] showed threshold versions of two cryptosystems based on
factoring N = pq, where p and q are large primes.

1. First they considered Goldwasser-Micali’s probabilistic encryption scheme [5]
and gave a threshold decryption scheme assuming that that p = q = 3 mod 4.

2. Second, they presented a threshold Rabin’s signature scheme assuming that
p = 3 mod 8 and q = 7 mod 8.

In this paper, we show

1. a generalized condition on p and q to obtain a threshold version of
Goldwasser-Micali and

2. a threshold Rabin-type signature scheme due to Kurosawa and Ogata [7] for
p = q = 3 mod 4 and

p+ 1
4

=
q + 1

4
mod gcd(p− 1, q − 1).

Note that our set of (p, q) is disjoint from that of Katz-Yung scheme.
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We now motivate the importance of this research. Several problems are known
to be self reducible. This property has been used to study average complexity in
contrast to worst case studies (as NP-completeness). However, factoring is not
known to be self reducible. So, it is possible that for certain families of N , the
product of two primes, factoring is easier than for others. So far, no such evidence
has been found. However, before Lenstra’s elliptic curve factoring algorithm [9] it
was unknown that factoring integers with relatively small primes was easier than
factoring other integers. Evidently it was known that the complete factorization
of smooth numbers (numbers with only very small primes) was trivial.

For the aforementioned reason it is important that when using factoring based
primitives, such as quadratic residuosity, one has schemes available that work
for an as large as possible families of N . We therefore revisit Katz-Yung with
the goal to extend their work for families of N for which their schemes failed.

For the reader not familiar with threshold cryptography, we recommend the
reading of [8], which has an extensive bibliography.

Our paper is organized as following. We first present some preliminaries. We
then discuss the new threshold signature scheme for a variant of Rabin’s signa-
ture scheme. Finally we explain how to use classical results on threshold cryp-
tography to achieve threshold decryption of Goldwasser-Micali.

2 Preliminaries

2.1 Notation and Definitions

Let
QRN = {x | x = a2 mod N for some a ∈ Z∗

N}.

If N = pq and p, q are two primes, then φ(N) = (p − 1)(q − 1) and λ(N) =
lcm(p− 1, q − 1) as usual.

For a prime p,
(

x
p

)
denotes Legendre symbol. For a composite N ,

(
x
N

)
denotes

Jacobi symbol. If p = 3 mod 4, then
(

−1
p

)
= −1.

2.2 Threshold Signature Scheme

We consider a (k, n)-threshold signature scheme. (For more background informa-
tion on threshold cryptography, see e.g. [8].) At the beginning of the game, the
adversary selects a subset of k − 1 players to corrupt. Hence we consider static
adversaries (i.e., during the protocol the set of adversaries cannot be modified).

In the dealing phase, the dealer generates a public-key pk along with secret-key
shares sk1, · · · , skn. The adversary obtains the secret-key shares of the corrupted
players along with the public-key.

After the dealing phase, the adversary submits signing requests to the un-
corrupted players for messages of his choice. Upon such a request, each player
outputs a signature share for the given message.
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The share combining algorithm takes as input a message and k valid signature
shares on the message along with the public-key, and outputs a valid signature
on the message.

We say that the adversary A forges a signature if at the end of the game,
he outputs a valid signature on a message that was not submitted as a signing
request to the uncorrupted players. A succeeds if A forges a signature.

We say that the threshold signature scheme is secure against chosen message
attack if there exists no probabilistic polynomial time adversary A who forges a
signature with nonnegligible probability.

2.3 Threshold Decryption Scheme

We consider a (k, n)-threshold decryption scheme. At the beginning of the game,
the adversary selects a subset of k − 1 players to corrupt.

The dealing phase is similar to the one for threshold signing (see Section 2.2).
Proving the security of threshold decryption schemes against chosen cipher-

texts is quite complex. So, we only focus on semantic security. After the dealing
phase, the adversary observes the threshold decryption of ciphertexts. Upon such
a request, each player outputs a decryption share for the given ciphertext.

The combining algorithm takes as input the ciphertext and k valid decryption
shares on the ciphertext along with the public-key, and outputs a valid plaintext
message.

We say that the adversary A succeeds if at the end of the game, he outputs
the plaintext of a ciphertext that was chosen before the start of the game and
not submitted as a decryption request to the uncorrupted players.

We say that the threshold decryption scheme is semantically secure if there
exists no probabilistic polynomial time adversary A who succeeds with nonneg-
ligible probability (for a more formal definition see the literature on threshold
decryption).

2.4 KO Variant of Rabin’s Signature Scheme

In the original Rabin’s signature scheme, a signature on a message m is given
by (σ,R) such that

H(m,R) = σ2 mod N,

where H is a hash function and R is a random string such that H(m,R) ∈ QRN .
In this scheme, however, a random string R is included in the signature. It is
known that we can avoid this problem if p = 3 mod 8 and q = 7 mod 8.

Kurosawa and Ogata showed a variant of Rabin’s signature scheme such that
p and q are arbitrary which can still eliminate R [7]. Their scheme is secure
against chosen message attack in the random oracle model if factoring N = pq
is hard [7].

Definition 1. Let N = pq, where p and q are primes. For x ∈ Z∗
N , let

u =
(
x

p

)
, v =

(
x

q

)
.
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Define

type(x)
�
=

⎧⎪⎪⎨⎪⎪⎩
0 if u = v = 1
1 if u = 1, v = −1
2 if u = −1, v = 1
3 if u = v = −1

(1)

Proposition 1. xy ∈ QRN if and only if type(x) = type(y).

Key Generation. The signer chooses two 
-bit primes p and q, and sets N =
pq. Next, the signer chooses αi such that type(αi) = i for i = 0, · · · , 3
randomly.

If p = q = 3 mod 4, this can be done as follows. The signer first chooses
α1 such that type(α1) = 1 randomly. Next let α0 = 1, α2 = −α1, α3 =
−1 mod N .

Finally, let H : {0, 1}∗ → Z∗
N be a hash function, and set the verification

key as (N,H,α0, α1, α2, α3) and the signing key as (p, q).

Signing. For a message m , the signer executes the following steps.
Step 1: Compute i such that type(H(m)) = i.
Step 2: For this i, compute σ ∈ QRN such that

αiH(m) = σ2 mod N (2)

The signature is (i, σ).

Note that αiH(m) ∈ QRN from Proposition 1.
Verification. On input a message m and a signature (i, σ), the verifier checks

if Eq.(2) is satisfied.

3 Proposed Rabin-Type Threshold Signature Scheme

3.1 Idea

Suppose that two primes p and q satisfy p = q = 3 mod 4 and

p+ 1
4

=
q + 1

4
mod gcd(p− 1, q − 1) (3)

Let N = pq for such p, q.

Lemma 1. Let d ∈ Zλ(N) be such that

d = (p+ 1)/4 mod (p− 1) (4)
d = (q + 1)/4 mod (q − 1) (5)

Then we can compute a square root of a ∈ QRN as

x = ad mod N.
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(Proof) First Eq.(4) and Eq.(5) have a solution because Eq.(3) is satisfied.
Next if p = 3 mod 4, then it is known that x = a(p+1)/4 mod p is a square

root of a ∈ QRp. Similarly, x = a(q+1)/4 mod q is a square root of a ∈ QRq.
Hence x = ad mod N is a square root of a ∈ QRN . Q.E.D.

Lemma 2. The above x satisfies x ∈ QRN .

(Proof) This is because(
x

p

)
=
(
ad

p

)
=
(
a

p

)d

= 1d = 1(
x

q

)
=
(
ad

q

)
=
(
a

q

)d

= 1d = 1 Q.E.D.

In our threshold scheme, the dealer distributes the above d to the players. If
type(H(m)) = 0, then the players jointly compute σ = H(m)d mod N . However,
the players cannot compute type(H(m)) because they do not know p, q. We solve
this problem by using the following lemma.

Lemma 3. Suppose that
(

a
N

)
= 1. Let x = ad mod N . Then

x2 = a mod N or x2 = −a mod N.

(Proof) Since
(

a
N

)
= 1, a ∈ QRN or −a ∈ QRN . First suppose that a ∈ QRN .

Then x2 = a mod N from Lemma 1.
Next suppose that −a ∈ QRN . Then since −a ∈ QRp, we have(

a

p

)
= −1 because 1 =

(
−a
p

)
= −

(
a

p

)
.

Now it holds that

x2 = a2d = a(p+1)/2 = a
p−1
2 +1 = a(p−1)/2a = −a mod p.

Similarly, we have x2 = −a mod q. This means that x2 = −a mod N . Q.E.D.

3.2 A k-Out-of-k Protocol

We present the k-out-of-k protocol in this subsection.

Key Generation

1. The dealer generates two primes p and q which satisfy p = q = 3 mod 4
and Eq.(3). He sets N = pq. He chooses (α0, α1, α2, α3) as shown in Sec.2.4.
Let H : {0, 1}∗ → Z∗

N be a hash function. The public-key of the protocol is
(N,H,α0, α1, α2, α3).
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2. The dealer computes d ∈ Zλ(N) which satisfies Eq.(4) and Eq.(5). He chooses
d1, · · · , dk ∈ Zφ(N) randomly such that

d1 + · · ·+ dk = d mod φ(N).

3. Finally, the dealer sends du to player u as a secret-key share for u = 1, · · · , k.

Signing. For a message m, the players first publicly compute
(

H(m)
N

)
.

– If
(

H(m)
N

)
= 1, then each player u outputs a signature share

yu = (H(m))du mod N.

The combining algorithm computes σ as follows.

σ = y1 × · · · × yk mod N.

It then checks if σ2 = H(m) or −H(m) mod N . If σ2 = H(m), then it
outputs a signature (0, σ). Otherwise, it outputs a signature (3, σ).

– If
(

H(m)
N

)
= −1, then each player u outputs a signature share

yu = (α1H(m))du mod N.

The combining algorithm computes σ as follows.

σ = y1 × · · · × yk mod N.

If σ2 = α1H(m), then it outputs a signature (1, σ). Otherwise, it outputs a
signature (2, σ).

Theorem 1. The above protocol is secure against chosen message attack for
any passive adversary, assuming the hardness of factoring (in the random oracle
model).

(Proof) Suppose that there exists a probabilistic polynomial time adversary A
who forges a signature with nonnegligible probability. We show a simulator S
who mounts a chosen message attack on the KO signature scheme. Wlog, assume
that an adversary A corrupts players 1, · · · , k − 1.

Dealing Phase
Input to S: N(= pq) and a hash function H : {0, 1}∗ → Z∗

N , where two primes
p and q satisfy p = q = 3 mod 4 and Eq.(3).

1. S chooses α1 randomly such that
(

α1
N

)
= −1. S sets α0 = 1, α2 = −α1 and

α3 = −1. S gives (N,H,α0, α1, α2, α3) to A as a public-key.
2. S chooses d1, · · · , dk−1 such that di ∈ {0, 1, · · · , N − 2

√
N} randomly, and

gives them to A as secret-key shares.
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Signature generation phase
Suppose that A submits a signing request for a message m to the uncorrupted
player k. S queries m to her sign oracle. Suppose that the oracle returns a
signature (Index, σ).

– If
(

H(m)
N

)
= 1, then S computes yk such that

σ = (H(m))d1 × · · · × (H(m))dk−1 × yk mod N.

– If
(

H(m)
N

)
= −1, then S computes yk such that

σ = (α1H(m))d1 × · · · × (α1H(m))dk−1 × yk mod N.

S gives dk to A as the signature share of player k. Finally, A outputs a forgery
(m̃, (̃i, σ̃)). S then A outputs (m̃, (̃i, σ̃)) as her forgery.

Now the distribution on (d1, · · · , dk−1) is statistically indistinguishable from
the real distribution, and type(α1) = 1 with probability 1/2. S simulates the
other part of the environment of A perfectly. Hence A outputs a forgery with
nonnegligible probability. Therefore, S also outputs a forgery with nonnegligi-
ble probability. However, it is known that KO scheme is secure against chosen
message attack by assuming the hardness of factoring [7]. This is a contradiction.

Hence the above protocol is secure against chosen message attack for passive
adversaries. Q.E.D.

3.3 Extensions

We can construct a (k, n)-threshold scheme and achieve robustness by using the
same technique as shown in [8, Sec.3.2].

For example, by using the idea of [11], our (n, n)-threshold signature scheme
can be converted to a (k, n)-threshold one as follows.

Key Generation

1. The dealer generates (P,N, α0, α1, α2, α3) and d1, · · · , dn as shown in Sec.3.2.
2. The dealer chooses a prime P > N as well. The public-key is (P,N, α0, α1,

α2, α3).
3. For each di, the dealer chooses a random (k − 1)-degree polynomial fi over

ZP such that fi(0) = di.
4. To player j, the dealer sends dj and fi(j) for 1 ≤ i ≤ n.

Signing

1. Each player u broadcasts yu as shown in Sec.3.2.
2. If player i cannot participate, the remaining players reconstruct di using the

shares fi(j)s. By using di, the yi is computed.
3. Finally σ is computed as shown in Sec.3.2.

Robustness is obtained by applying the technique given in [8, Sec.3.2].
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4 Threshold Decryption of Goldwasser-Micali

4.1 Idea

The main idea behind Katz-Yung threshold decryption scheme of Goldwasser-
Micali, is the following observation. Suppose that N = pq, where p = q =
3 mod 4 are primes. Then the condition to check whether C, with Jacobi symbol
1, is a quadratic residue or not, reduces to checking whether C(N−p−q+1)/4 =
1 mod N [8]. This allowed Katz-Yung to use exponentiation in their threshold
decryption.

When p = 1 mod 4 or q = 1 mod 4, this test to check whether C is quadratic
residue modulo N , no longer works. Elementary number theory however allows
us to find another test, for several cases. We now elaborate.

4.2 Using Number Theory

Euler’s criterion tells us that when p is an odd prime(
C

p

)
= C

(p−1)
2 mod p.

So, to allow us to continue to use the power of exponentiation to achieve thresh-
old decryption, we wonder whether there exists an exponent a such that Ca mod
N returns 1 if C ∈ QRN and otherwise −1 when C has Jacobi symbol 1. Evi-
dently, such an a exists if

a = (p− 1)/2 mod p− 1
a = (q − 1)/2 mod q − 1 (6)

The generalized Chinese Remainder Theorem tells us, this a exists modulo λ(N)
if and only if gcd(p− 1, q − 1) | (p− 1)/2− (q − 1)/2, or

gcd(p− 1, q − 1) | (p− q)/2. (7)

We now distinguish between the following cases:

– p = 3 mod 4 and q = 1 mod 4. In this case p = 4p′+3 and q = 4q′+1, where
p′ and q′ are not necessarily primes. (p − q)/2 = 2(p′ − q′) + 1. However,
gcd(p− 1, q − 1) is even. So, the condition will always be violated.

– p = 1 mod 4 and q = 3 mod 4. This case is similar as above.
– p = 3 mod 4 and q = 3 mod 4. Let p = 4p′ + 3 and q = 4q′ + 3, where p′ and
q′ are not necessarily primes. (p− q)/2 = 2(p′− q′). It is now easy to see the
condition in Eq. 7 is always satisfied. 1

– p = 1 mod 4 and q = 1 mod 4. Let p = 4p′ + 1 and q = 4q′ + 1, where p′

and q′ are not necessarily primes. It is not too difficult to see that there are
cases for p′ and q′ for which Eq. 7 will be satisfied and others for which it
will not.

1 Note that gcd(p − 1, q − 1) is not divisible by 4.



A Generalization and a Variant of Two Threshold Cryptosystems 359

We now analyze the case p = 1 mod 4 and q = 1 mod 4 where p′ and q′ are
as above in more details. Note that (p−q)/2 = 2(p′−q′) and gcd(p−1, q−1)
is this time divisible by 4. Hence
• If both p′ and q′ are odd, Eq. 7 will be satisfied.
• If p′ is even and q′ is odd (or vice versa), Eq. 7 will not be satisfied.
• Consider the case both p′ and q′ are even. Now write p′ = 2p′′ and
q′ = 2q′′. It is now easy to see that the analysis is similar, but replacing
p′ by p′′ and q′ by q′′ in the argument.

This brings us easily to the condition that if

p = q = 2k + 1 mod 2k+1 where k ≥ 2

Eq. 7 is satisfied.

4.3 A Generic Scheme

When Eq. 7 is satisfied, the Chinese Remainder Theorem allows us to com-
pute an a mod λ(N), which allows us to proceed with a threshold decryption of
Goldwasser-Micali similarly as the threshold decryption in RSA. We now explain
the details.

Decryption in the original Goldwasser-Micali scheme corresponds to decide
whether the ciphertext C (with Jacobi symbol 1) is a quadratic residue or not.
In Goldwasser-Micali’s scheme this can easily be done by the receiver of the
message, since this one knows the factorization of N . In a threshold decryption
scheme, the multiple parties (at least k) that will help the receiver in decrypting
the ciphertext should obviously not learn this factorization. Katz-Yung observed
that when N = pq and p = q = 3 mod 4 checking whether C is a quadratic
residue or not corresponds to an exponentiation modulo N . The most famous
scheme in cryptography that uses exponentiation modulo a composite is RSA.

Decryption in RSA is done by raising the ciphertext by a secret exponent d
modulo N . For RSA, several threshold schemes have been developed (consult [4]
for a survey until 1997, and e.g. [2]). In all these threshold RSA schemes, the
secret d is shared in a preliminary phase, without revealing anything about the
factorization ofN . Different techniques are then used to compute in a shared way
Cd mod N . Depending on the scheme used the security against insiders could be
limited to being passive, or active. The last case is more difficult to deal with (see
also [1]). To decrypt the ciphertext, the parties perform a shared exponentiation.
Typically, the results of these are sent to the receiver, who acts as a combiner
by typically performing some multiplications modulo N . The receiver does not
have any secrets.

We now explain threshold Goldwasser-Micali decryption. The method is
generic in the sense that some schemes for RSA threshold decryption can be used
for threshold Goldwasser-Micali decryption as shown in [8]. We now describe the
details. When we refer to a share distribution scheme, a shared exponentiation
scheme, and a combiner scheme we refer to these coming from RSA threshold
decryption scheme.
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If N = pq, where p = q = 2k + 1 mod 2k+1 and k ≥ 2, checking whether C
is a quadratic residue or not, can be done by raising C to a, where a is as in
Eq. 6. To achieve threshold decryption, in a preliminary phase, the parties receive
shares of a based on the share distribution scheme. To decrypt a ciphertext C
they proceed using the threshold exponentiation scheme. Each party sends its
result to the receiver. The receiver performs the combiner scheme and obtains
Ca mod N , which is 1 or -1. This immediately implies the plaintext.

4.4 The Security

Since Goldwasser-Micali’s scheme provides only semantic security, the threshold
variant also does not deal with active adversaries. The security proofs follow
immediately from the one of Goldwasser-Micali and the security proof of the un-
derlying threshold RSA (threshold exponentiation modulo a composite) scheme.
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F-13705 La Ciotat Cedex, France
benoit.chevallier-mames@gemplus.com

Abstract. ElGamal scheme has been the first encryption scheme based
on discrete logarithm. One of its main advantage is that it is simple, natu-
ral and efficient, but also that its security is clearly understood. However,
one of its — often forgotten — disadvantages is that this scheme requires
the encoding of messages into group elements, in order to be semanti-
cally secure. Unfortunately, this need prevents the scheme to be fully
practical.

In this paper, we propose a new way to deal with the problem of mes-
sage encoding, which offers several advantages though some disadvan-
tages. Our scheme is based on a quite simple combination of the standard
ElGamal scheme with a message encoding inspired by the Naccache-Stern
cryptosystem. We consider our solution as a new step towards the open
problem of designing a discrete-logarithm based encryption scheme with
the property of being additively homomorphic. Unfortunately, our con-
struction is still not a complete solution. We hope however that it might
give clues for a possible full solution.

Keywords: ElGamal encryption scheme, Naccache-Stern cryptosystem,
DL-basedhomomorphic scheme, standardmodel, public-key cryptography.

1 Introduction

Since the discovery of public-key cryptography by Diffie and Hellman [DH76],
several encryption schemes have been proposed, but very few of them had real
impact on the academic community or industry. Clearly, it is commonly agreed
that RSA [RSA78] and ElGamal [ElG85] are of this kind.

More precisely, ElGamal scheme has been the first encryption scheme based
on discrete logarithm. One of its main advantage is that it is simple, natural and
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efficient, but also that its chosen-plaintext security is clearly understood: under
the so-called CDH assumption, the one-wayness is ensured; under the so-called
DDH assumption, the scheme is semantically secure. However, one of its often
forgotten disadvantages is that this scheme requires the encoding of messages
into group elements, to ensure indistinguishability. Unfortunately, this need pre-
vents the ElGamal scheme to be fully practical, and its homomorphic properties
to be really used.

To get rid off this problem, either the so-called hashed-ElGamal is preferred
(in which case, the security is only ensured in the random oracle model), or the
construction is totally modified. Note that the Cramer-Shoup encryption scheme
(cf. [CS98]), whose IND-CCA proof is valid in the standard model, also requires
this encoding.

On the contrary to the problem of designing additive homomorphic encryp-
tion schemes based on factorization, which has already been efficiently solved by
Paillier [Pai99], after other less-efficient constructions such as Goldwasser-Micali
[GM84] or Okamoto-Uchiyama [OU98], no practical homomorphic DL-based prim-
itive is currently known. One would note that the DL-type encoding-free scheme
proposed by Chevallier-Mames, Paillier and Pointcheval [CPP06] offers a very-
weak kind of malleability, in the sense that one can add a plaintext to a ciphertext
without decrypting.

These malleability properties (which also include self-blinding, i. e., the ability
of “re-randomizing” a ciphertext) are of great use in certain applications such
as e-votes or banking. For example the system of Paillier, and its generalization
proposed by Damg̊ard and Jurik [DJ01], have been used to design electronic
vote systems [BFP+01, Jur03], for Private Information Retrieval [Lip05], or for
building Mix-nets [NSNK06, Jur03].

Our Contribution. In this paper, we propose a new solution to the encoding
problem, with a security (for chosen-plaintext attacks) in the standard model,
under classical assumptions (namely, the DDH assumption). As we explain later,
our scheme offers several advantages, though some disadvantages.

Roughly, our scheme is a simple and natural combination of ElGamal with
a message encoding inspired by the Naccache-Stern [NS97] cryptosystem. In
this regard, and even if our solution has been designed and studied mainly
because of the encoding difficulties, our scheme can also be seen as a modifi-
cation of the original Naccache-Stern construction in order to achieve a certain
proof of security: indeed, nothing is really known about the plain Naccache-Stern
scheme.

Last but not least, our solution might be seen as a new step towards the
design of an additive homomorphic encryption scheme based on the discrete
logarithm problem: under conditions that will be detailed, addition of ciphertexts
is possible. Moreover, as we do not change the construction of ElGamal, our
solution still offers full self-blinding. We hope that our construction might give
clues for a possible future full solution.
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Outlines. Our paper is organized as follows. In the second part, we remind the
background needed for this work, notably definitions of encryption schemes and
of their security notions. Then, we describe the ElGamal encryption schemes, and
why encoding is needed. In the same section, we also expose solutions that were
already proposed to deal with this inherent problem. Fourth part is the main
part of our paper: it describes our new encoding for the ElGamal scheme and
details its features, efficiency and malleability properties. Finally, we conclude
our paper, by opening new problems that are consequences of our work.

2 Preliminaries

In this section, we briefly remind the background regarding public key
encryption.

2.1 Public-Key Encryption

We describe a public-key encryption scheme E as four probabilistic algorithms,
E = (SetE ,GenE ,Encrypt,Decrypt):

Setup. Given a security parameter k, SetE(1k) produces some common param-
eters params, used by the three others algorithms.

Key Generation. Given a security parameter k, GenE(1k) produces a pair
(pk, sk) of public and private keys.

Encryption. Given a message m and a public key pk, Encryptpk(m) produces
a ciphertext c. As for security reasons, the procedure is typically probabilis-
tic, we write c = Encryptpk(m, r) where r denotes the randomness used by
Encrypt.

Decryption. Given a ciphertext c and a private key sk, Decryptsk(c) returns
a plaintext m or a special symbol ⊥ if the ciphertext is invalid.

We will say that a public-key encryption scheme E is additively homomorphic
if, given two ciphertexts c1 = Encryptpk(m1, r1) and c2 = Encryptpk(m2, r2)
of unknown plaintexts m1 and m2, one can publicly compute a valid ciphertext
c3 of message m1 +m2.

Moreover, we will say that E allows self-blinding, if given c, an encryption of
some (unknown) message m, it is possible to generate efficiently another unlink-
able encryption c′ of m.

2.2 Security Notions for Encryption Schemes

One-Wayness. The most important security notion that one would expect from
an encryption scheme to fulfil is the property of one-wayness (OW): an attacker
should not be able to recover the plaintext matching a given ciphertext. We
capture this notion more formally by saying that for any adversaryA, succeeding
in inverting the effects of Encrypt on a ciphertext c should occur with negligible
probability. A is said to (k, ε, τ)-break OW when
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SuccOW
E (A) = Pr

m,r
[(pk, sk)← GenE(1k) : A(pk,Encryptpk(m, r)) = m] ≥ ε,

where the probability is taken over the random coins of the experiment and
the ones of the adversary, and A halts after τ elementary steps. An encryption
scheme is said to be one-way if no probabilistic algorithm (k, ε, τ)-breaks OW
for τ ≤ poly (k) and ε ≥ 1/poly (k).

Semantic Security. The notion of semantic security (IND) [GM84], as known
as indistinguishability of encryptions captures a stronger notion of privacy. Here,
the attacker should not learn any information whatsoever about a plaintext given
its encryption. The adversary A = (A1,A2) is said to (k, ε, τ)-break IND when

AdvIND
E (A) = 2× Pr

b,r

[
(pk, sk)← GenE(1k), (m0,m1, s)← A1(pk),
c = Encryptpk(mb, r) : A2(m0,m1, s, c) = b

]
− 1 ≥ ε,

where again the probability is taken over the random coins of the experiment
as well as the ones the adversary. A must run in at most τ steps and it is
imposed that |m0| = |m1|. An encryption scheme is said to be semantically
secure or indistinguishable if no probabilistic algorithm can (k, ε, τ)-break IND
for τ ≤ poly (k) and ε ≥ 1/poly (k).

2.3 Computational Assumptions

We now briefly recall the definition of the discrete-log and related problems
needed for the sake of this work. In what follows, G denotes an abelian fi-
nite group (denoted multiplicatively), described by a generator g and its prime
order q.

Definition 1 (Discrete Logarithm – DL). Given gx ∈ G where x ← Zq,
compute x.

Definition 2 (Computational Diffie-Hellman – CDH). Given gx ∈ G and
gy ∈ G for x, y ← Zq, compute gxy ∈ G.

Definition 3 (Decision Diffie-Hellman – DDH). Let us consider the two
distributions D = (gx, gy, gxy) and R = (gx, gy, gz) for randomly distributed
x, y, z ← Zq. Distinguish D from R.

It is easily seen that DDH ⇐ CDH ⇐ DL where ⇐ denotes polynomial reduc-
tions. In most cryptographic applications, the structure of the group G is chosen
in such a way that these three computational problems seem intractable. A typ-
ical example is to choose G ⊆ Z∗

p where q divides (p− 1) where classically, p is
a 1024-bit prime and q a 160-bit prime. Another widely used family of groups is
elliptic curves over large prime fields [Mil85, Kob87].
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3 The ElGamal Cryptosystem

ElGamal encryption was introduced around twenty years ago [ElG85]. It requires
a cryptographic group G = 〈g〉 of order q. In the ElGamal scheme, one generates
a public-private key pair by randomly selecting x← Zq and computing y = gx.
The public key is then y while the private key is x. In order to encrypt a message
m, one randomly selects r ← Zq and computes u = gr and v = yr · m. The
ciphertext is c = (u, v). Using the private key x, the ciphertext c = (u, v) can be
decrypted as m = v · u−x.

It is well-known that, for security reasons, one has first to use groups G of
prime order, and second to define M as included in the group G. Under these
assumptions, it has been shown that ElGamal encryption is IND-CPA under the
DDH assumption.

Unfortunately, the two above constraints make the ElGamal encryption scheme
less practical than it appears at first sight. Indeed, before encryption takes place,
the message must be encoded into a group element, and this group encoding must
be efficiently invertible in order to allow the original message to be recovered
during the decryption process. Such an encoding may be time consuming, and
may also partially or totally destroy the inherent homomorphic property of the
system. Also, using a group encoding remains incompatible with the optimiza-
tion which consists in working in a small subgroup, G, of Z�

p of prime order q
where q is a 160-bit prime, a setting in which group exponentiations are much
faster. Indeed, the only known way to preserve the homomorphic property is to
use a morphism from Zq to G, such as m #→ gm, as an encoding function. Unfor-
tunately, this leads to an inefficient decryption process, as one has to compute
a discrete logarithm to reverse the encoding (see the computation of the tally
in [CGS97] where an e-vote system is built from ElGamal).

3.1 The ElGamal Cryptosystem

With specifications due to the previously explained details, ElGamal encryption
scheme is defined as follows [ElG85].

E
lG

am
al

Setup: Let p and q be two large primes so that q divides (p−1).
Let G be the subgroup of Z�

p of order q, and g be a generator
of G. Let Ω be an (bijective) encoding map from Zq onto G.

Key generation: The private key is x← Zq. The corresponding
public key is y = gx.

Encryption: To encrypt a message m ∈ Zq, one encodes m by
computing ω = Ω(m), randomly selects r ← Zq and computes
(u, v) = (gr, yr · ω). The ciphertext is c = (u, v).

Decryption: To decrypt a ciphertext c = (u, v), one computes
ω = v ·u−x and recovers the original plaintext m = Ω−1(ω), if
ω is in the set of all the possible encodings. On the contrary,
if ω is not a valid encoding, the decryption process returns a
special symbol ⊥.
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This cryptosystem is known to be one-way under the CDH assumption,
and indistinguishability holds under the DDH assumption. These security no-
tions are reached in the context of chosen-plaintext attacks, in the standard
model.

3.2 The Hash-ElGamal Cryptosystem

In order to overcome the issue of group encoding, a hash variant of ElGamal
encryption was suggested.

H
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h-
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Setup: Let p and q be two large primes so that q divides (p−1).
Let G be the subgroup of order q of Z�

p, and g be a generator
of G. Let H : G → {0, 1}�m be a hash function.

Key generation: The private key is again x ← Zq. The corre-
sponding public key is y = gx.

Encryption: To encrypt a message m ∈ {0, 1}�m, one randomly
selects r ← Zq and computes (u, v) = (gr,H(yr) ⊕ m). The
ciphertext is c = (u, v).

Decryption: To decrypt a ciphertext c = (u, v), one computes
m = H(ux) ⊕ v.

This cryptosystem features one-wayness and indistinguishability under chosen
plaintext-attacks under the sole CDH assumption. The security proof, however,
stands in the random oracle model [FS86, BR93]. Alternatively, under the DDH
assumption, one can apply a randomness extractor in place of the random ora-
cle, in order to generate a truly random mask. Unfortunately, this is much less
efficient [CFGP06].

Note however that the use of the hash function destroys the homomorphic
property of the scheme.

3.3 Encoding-Free ElGamal Encryption

In 2006, Chevallier-Mames, Paillier and Pointcheval proposed an ElGamal vari-
ant, using a new encoding-free technique [CPP06]. Their cryptosystem enjoys
performances similar to plain ElGamal but does not require group encoding,
nor randomness extractors. Furthermore, the security holds in the standard
model, but under new intractability assumptions (namely, Class Diffie-Hellman
problems), the computational of which is shown to be equivalent to CDH
problem.

More precisely, their scheme uses the so-called class of an element of subgroup
of Zp2 of order pq, where p and q are two large primes, so that q divides p− 1.
This class is defined as follows. Let L be described as L(w) = (wq−1 mod p2)/p.
Let g be a generator of the subgroup of order q of Z∗

p. The class of w ∈ Zp2 of
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order pq is by definition [[w]] = L(w) · L(g)−1 mod p. The encoding-free ElGamal
encryption (in its additive variant) is then described as follows.
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Setup: Let p and q be two large primes, so that q divides p− 1.
Let g be a generator of the subgroup of order q of Z∗

p.
Key generation: The private key is a random number x ∈ Zq.

The corresponding public key is y = gx mod p.
Encryption: To encrypt a message m ∈ Zq, one picks a random

r ∈ Zq and computes u = gr mod p and v = [[yr mod p]] +
m mod p. The ciphertext is c = (u, v).

Decryption: To decrypt a ciphertext c = (u, v), one simply
computes m = v − [[ux mod p]] mod p.

We refer to the original paper to show that the security in the standard model
under chosen-plaintext attacks is based on the CDH assumption for one-wayness,
and on the assumption that the so-called Decision Class Diffie-Hellman is hard
for indistinguishability.

Note that this scheme offers a very-weak kind of malleability, in the sense that
one can add a plaintext to a ciphertext without decrypting.

4 Main Scheme

This section is the core of our paper. Our goal is to propose a new variant of
ElGamal that enjoys both useful malleability properties and a security proof in
the standard model (under chosen-plaintext attacks), relatively to a well known
assumption. A way to do that is to keep intact the construction of ElGamal and
to design a new message encoding that allows some malleability.

First, we remind the Naccache-Stern encryption scheme, whose construction
inspired our encoding. Second, we describe our new message encoding for the
ElGamal cryptosystem and detail its features. Third, we do exhibit arguments
of security for the scheme derived from the combination of ElGamal and our
message encoding, and we finally conclude by showing its interesting malleability
properties.

4.1 The Naccache-Stern Cryptosystem

The Naccache-Stern cryptosystem is very special in the world of asymmetric cryp-
tography. Indeed, it uses a special trapdoor (a kind of multiplicative knapsack)
for deciphering, which makes it unique. The Naccache-Stern scheme [NS97]1 can
be described as follows.

1 We refer the reader to the original paper [NS97] for details on how �i and pi are set,
in order to achieve optimal efficiency.
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N
ac

ca
ch

e-
St

er
n

Key generation: Let p be a strong prime. For a parameter n,
the key generation algorithm searches for n primes pi and n
valuations 
i, such that

∏n
i=1 pi

�i−1 < p.
The private key is a random number x ∈ Z∗

p−1. The cor-
responding public key is the set of elements ci’s defined as
ci = pi

1/x mod (p−1) mod p. Then, one defines the set NS ∈ Z∗
p

as NS = {
∏n

i=1 pi
mi , for mi ∈ [0, 
i − 1]}. For security, the

pi’s and NS might be kept private.
Encryption: To encrypt a message m = {mi} with mi ∈

[0, 
i − 1], one simply computes w =
∏n

i=1 ci
mi mod p. The ci-

phertext is w. Of course, to achieve indistinguishability, some
randomization is included in a pre-step (for example, via a
padding of the message with random).

Decryption: To decrypt a ciphertext w, one computes t =
wx mod p. Then, if t ∈ NS, one simply recovers the mes-
sage m = {mi} by decomposing t into the base of primes pi,
which is simple as pi’s are small and known. On the contrary,
if t /∈ NS, the decryption returns a special symbol ⊥.

Even if the Naccache-Stern scheme is based on the classical DL problem, its
special type of trapdoor makes that there does not exist real proof of security
for this scheme.

4.2 Our Scheme

As previously said, our scheme is made of the (almost natural but never proposed
at our knowledge) composition of ElGamal and a message encoding inspired by
the Naccache-Stern cryptosystem (in its optimal bandwidth variant2).

Main Points of Design. First, as we want to mix Naccache-Stern and ElGamal
schemes, we have to include the pi’s in the subgroup G ⊂ Z∗

p of order q. Unfortu-
nately, taking (relatively) small subgroup order is in contradiction with expecting
large bandwidth, as the smaller is q, the more negligible is the probability that
a small prime is in G. Thus, we have to take a maximal order for q, i.e., we have
to use a strong prime p.

Second, once we have mixed the ElGamal and Naccache-Stern cryptosystems
(see below for further details), we see it is no more needed to scramble elements
of NS (which will be used to encode the messages in G), as done in Naccache-
Stern scheme. Therefore, we need no more to compute and publish large public
key set {ci}, but rather to take common parameters pi for all users.

Description. We describe our proposal for a new encoding for the standard
ElGamal cryptosystem (see Subsection 3.1) according to the previously explained
points.
2 If, however, the reader prefers to first look at our description with the simplest

variant of Naccache-Stern scheme, it suffices to suppose that �i = 2 for all i.
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O
ur

ne
w

en
co

di
ng Setup: Let p = 2q + 1 be a strong prime. Let g be a generator

of the subgroup G of Z∗
p of order q. For a certain parameter

n, the setup algorithm searches for n primes pi and n valu-
ations 
i, so that pi’s are of order q into Z∗

p and such that∏n
i=1 pi

�i−1 < p.

Encoding Ω(m) of a message m: A message m is a n−tuple
of integers, m = (m1, . . . ,mn) such that 0 ≤ mi < li for all
i = 1, . . . , n. The encoding of m is Ω(m) =

∏n
i=1 pi

mi . We
denote NS the image of Ω, i. e., the set of all the possible
encodings.

Decoding of an element t of NS ⊂ G: To decode, one decom-
poses t into the base of primes pi, t =

∏n
i=1 pi

mi and outputs
m = (m1, . . . ,mn).

Efficiency. On the one hand, the encoding process is composed of at most
n multiplications and n small exponentiations in Z; on the other hand, the
decryption is made of a factorization of a simple instance, which is done in
practise by some trial divisions by the pi’s. Hence, in term of speed, the cost of
the encoding process is negligible compared to the cost of the ElGamal encryption
and decryption steps.

Parameter Size. In the Naccache-Stern framework, the public key is made
of some secret powers of small primes; our scheme also needs a large set of
elements of Z∗

p (namely, the pi’s), but a definitive advantage over the Naccache-
Stern scheme is that (i) these elements can be shared by users instead of being
dedicated to a given person, and (ii) these elements are small3, while ci’s in
Naccache-Stern are full-size elements of Z

∗
p. These two advantages allow much

more practical public-key infrastructures, almost as efficient as those of others
ElGamal schemes.

The Impact of the Maximal Order. However, to be fair, one disadvantage
of our construction over others ElGamal-based scheme is that we limit the order
of the subgroup (that is q) to be maximal, which makes both private key larger
and exponentiation longer4. We however may consider this as a price to pay to
achieve a Naccache-Stern type construction with a provable security.

Encryption Bandwidth. By experimentation, we can estimate the size of the
messages that we could encrypt. Typically, using 
i = 2 for every i, we may be

3 Typically, one finds the pi’s in the 2n first primes, the factor 2 coming from the
condition that the chosen primes must be of order q in Z

∗
p.

4 Indeed, the order has been chosen maximal in order to make that almost half small
primes are of order q in Z

∗
p. However, if the speed is more important than the scheme

bandwidth, it should be possible to take shorter orders q at the price of larger pi’s
and so less bandwidth.
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able to generate p of 1024 bits and pi’s, such that n ≈ 117, meaning that we
would encrypt message of almost 117 bits. For more general case, the point is
to optimize

∏
i 
i (whose logarithm is the bitsize of messages one can encrypt),

under the condition that
∑

i(
i − 1) log2(pi) is limited by the bitsize of p.

Variant. To work in the subgroup of order q, i. e., the subgroup of squares of
Z∗

p, we can use another trick instead of using pi’s of order q. As p is a strong
prime, p ≡ 3 (mod 4), so given an element x of Z∗

p, either x or −x is a square. As
a consequence, in the setup of our system, we can use all small primes, relaxing
the condition that pi must be a square, i. e., of order q. However, we restrict
the li’s such that

∏n
i=1 pi

�i−1 < p/2. In the encoding process, given a message
m = (m1, . . . ,mn) with 0 ≤ mi < li, we compute w′ =

∏n
i=1 pi

mi and set w = w′

(resp. w = p − w′), according to w is a square (resp. a non-square). To decode
t, one factors t (resp. p− t) if t < p/2 (resp. if t > p/2).

This variant reduces the public key size (instead of giving all the pi’s we
can make n public and the pi’s will be the n first primes), and gives a better
bandwidth (if we use 
i = 2 for every i and if p is a 1024 bit prime, we can
encrypt a message of 131 bits as the product of the first 131 primes is smaller
than 21022). The encoding cost is similar to the one of the main scheme (to see
efficiently if w is a square, one can pre-compute the Legendre symbols of the
pi’s). The decoding process has the same complexity.

Security. We finish this comparison by a major advantage of our scheme (no-
tably over the encoding-free ElGamal scheme based on Class Diffie-Hellman prob-
lems): the security of our scheme is based on a classical assumption, namely DDH,
as shown in the next section.

4.3 Security Analysis

Oppositely to the typical encryption proofs, we start with indistinguishability,
as it appears surprisingly simpler than the analysis of the one-wayness of our
scheme.

Theorem 1. The composition of our new encoding and the ElGamal
scheme is semantically secure against chosen plaintext attacks, under the
DDH assumption.

This theorem follows from the semantic security of the standard ElGamal
scheme as we only specify the encoding process of messages in elements
of G. �

We emphasize that this semantic security is interesting not only for our scheme,
but also as our modification can be seen as a way to achieve a certain security for
a Naccache-Stern type cryptosystem (while the original Naccache-Stern scheme
has no known proof of security).
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One-Wayness. The one-wayness of the construction is not as simple to char-
acterize. At least, due to relations with semantic security, we know it is at least
as difficult as DDH to invert the scheme. In addition, one might have the intu-
ition that the scheme is as hard as the CDH to solve, but in the following, we
almost infirm this, by showing that the natural reduction one could think about
is inefficient.

Let a CDH challenge (g, s = ga mod p, gx mod p) on a group G = 〈g〉 of order
q = (p− 1)/2 in Z∗

p, described by (g, p, q), and assume an access to an attacker
A against the one-wayness of the scheme corresponding to the composition of
our new encoding and ElGamal.

One could give (s, r) as a ciphertext to the attacker (for a random r ∈ G),
which would return a plaintext m if (rg−ax mod p) ∈ NS. However, very few
elements of G are in NS5, and so the probability of this reduction is very small.
Anyway, if such m was returned, one could simply re-encode the returned m by
computing

∏n
i=1 pi

mi mod p, and divides r by this quantity, in order to get gax,
the answer of the given challenge.

As a conclusion, we only claim that the OW-CPA security of the scheme is at
least as difficult as the DDH problem to solve (thanks to the indistinguishability
proof), even it might be possible one could find a better proof, based on a weaker
assumption.

4.4 Towards a DL-Based Homomorphic Scheme

As we said earlier, additively homomorphic encryption primitives are wanted ob-
jects, as they have many applications in protocols. However, today, only schemes
based on factorization are known (e. g., Paillier [Pai99], or its predecessors such
as Goldwasser-Micali [GM84] and Okamoto-Uchiyama [OU98]).

Remarkably, the encoding-free ElGamal variant of Chevallier-Mames, Pail-
lier and Pointcheval offers a weak kind of malleability, for the first time for a
DL-based primitive. As we explain in this section, our scheme goes further, as it
allows full self-blinding of ciphertexts and a certain malleability on ciphertexts.

Self-blinding. The self-blinding property is very useful, as it allows to re-
randomize ciphertexts, which is a key feature for certain applications. In our
scheme, as we keep intact the structure of ElGamal, we can still re-randomize a
ciphertext (u, v) by picking a random r ∈ Zq, then forming the new ciphertext
(u′, v′) of the same plaintext, with u′ = u · gr mod p and v′ = v · yr mod p.

Adding Ciphertexts (Under Restrictions). Let two valid ciphers (u, v)
and (u′, v′), ciphering respectively two messages m = (m1, . . . ,mn) and m′ =
(m′

1, . . . ,m
′
n). Then, (u′′ = u · u′ mod p, v′′ = v · v′ mod p), is a valid cipher of

m′′ = (m1 +m′
1, . . . ,mn +m′

n) as long as one has

∀ i ∈ N, 1 ≤ i ≤ n, mi +m′
i < 
i. (†)

5 In fact,
∏i=n

i=1 �i over the q elements of G.
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This means that it is possible to add ciphertexts, if plaintexts were previously
selected in such way the condition (†) is always fulfilled.

For example, one might set a voting scheme sketched as follows. The voters
would either vote for yes (1) or no (0) to some terrible question. During the
setting of the election, each voter would be assigned an index i she must use
(that is, for any 1 ≤ i ≤ n, 
i voters would use the same pi to encrypt their
vote mi ∈ {0, 1}). Then, all the votes6 of the

∑
i 
i voters could be “aggregated”

by multiplying the ciphertexts, then decrypted by some well-know techniques of
threshold encryption (in [Ped91], for instance, one can find the description of a
robust threshold variant of ElGamal that can be applied to our scheme). This
would give at the end the sum of the votes, and so the result of the ballot. In
practice, if p is a 1024 bits prime, if n = 1 and p1 = 2, we can manage until 1024
voters with our scheme, which is a satisfying number as in a real life scenario,
there are around a thousand registered voters by polling stations.

By using the malleability property, we could also design a multi-candidate
election system with n candidates and k voters as follows: a voter would vote
for the ith candidate, with 1 ≤ i ≤ n, by encrypting pi. By multiplying all
the ciphertexts, the election manager would get an encryption of

∏
i p

ki

i where
the ki’s are the number of votes for the ith candidate, respectively. With the
setting k < logpn

(p) (where we supposed that pn is the larger prime) and NS =
{
∏n

i=1 pi
mi , for mi so that

∑
i mi ≤ k}, this encryption is valid, i. e., can be

decrypted. If n = 5 and p is a 4096 bit prime such that p5 = 17 (that is, one
finds a strong prime p = 2q + 1 such that 5 of the 7 first primes are of order q),
one can still have a thousand voters. With the variant of our encoding, we can
use all the primes but with the restriction k < logpn

(p/2). If n = 7 and p is a
4096 bit prime, with this variant, we have p7 = 17 (the seventh prime) and can
still have a thousand voters.

We do agree that our scheme is still not the panacea for complete additive
homomorphy, but at least, we believe that the full self-blinding of the scheme as
well as its restricted additive property might be of interest. Clearly, devising a
full and complete DL-based additive scheme is still an open problem.

5 Conclusion

In this paper, we have proposed another way to deal with the problem of mes-
sage encoding, which is often a forgotten drawback and bottleneck of ElGamal
encryption type cryptosystems. Our scheme offers several advantages though
some disadvantages: notably, our scheme is based on the classical DDH assump-
tion in the standard model (for the chosen-plaintext scenario), while previous
solutions were mainly based on new defined problems or random oracles.

We also showed how our scheme possesses some additive homomorphy, which
was an open problem for a long time for DL-type primitives. Notably, we have

6 That would have been proved to be a correct encryption of a message in the valid
set.
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shown how it allows full self-blinding and a restricted additivity of the cipher-
texts.

Open problems let by this work are of several kinds: firstly, we still consider
the search of a full additively homomorphic DL-based scheme as interesting and
challenging; secondly, we think it might be possible to achieve a better proof
of our scheme in the OW-CPA scenario; lastly, it should be possible to adapt
our technique to mix Naccache-Stern and Cramer-Shoup encryption schemes, in
order (maybe) to obtain a scheme without encoding that would be secure in the
standard model against chosen ciphertext attacks.

Acknowledgement. The work described in this paper has been supported in
part by the European Commission through the IST Program under Contract
IST-2002-507932 ECRYPT.
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Abstract. Differential uniformity is an important property of crypto-
graphic building blocks used in the design of symmetric ciphers. In this
paper it is proved that certain canonical mappings on elliptic curves are
differentially uniform. The main observation of this paper is that the
impersonation attack against the implicit certificate scheme of Ateniese
and de Medeiros does not work if a differentially uniform mapping is
used in the scheme. This phenomenon is analyzed in the slightly more
general context of a partially blind signature scheme, which is a new
cryptographic primitive that seems to gain security properties from dif-
ferentially uniform mappings.

Keywords: Elliptic curves, differential uniformity, blind signatures,
implicit public key certificates, key issuing protocols, provable security,
digital signature schemes, message recovery.

1 Introduction

Differential uniformity is an important property of mappings used in the design
of symmetric cryptographic primitives such as block ciphers to obtain resistance
against differential cryptanalysis [1]. Differential uniformity means that for all
fixed strict differences in the input there is a large uncertainty about the output
difference. Previously, it is known from [2] and [3] that the mapping from the
multiplicative group of a finite field to the additive group of the finite field
is differentially uniform. This paper contains two new contributions. First, it
is proved that the canonical mapping from an elliptic curve to its x-coordinate is
differentially uniform. Secondly, a potential application of differential uniformity
to public key cryptography is outlined.

Ateniese and de Medeiros [4] presented a modification (mNR) of the Nyberg-
Rueppel (NR) signature scheme [5]. They also proposed a scheme for generating
implicit public key certificates based on mNR signatures by a trusted third party
(TTP). While a solution was presented to the key escrow problem by blinding
� Supported by the project “Packet Level Authentication” funded by TEKES.

J. Garay et al. (Eds.): ISC 2007, LNCS 4779, pp. 376–389, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Differential Properties of Elliptic Curves and Blind Signatures 377

TTP to the user’s private key, the solution requires a proof of knowledge of a
discrete logarithm of the blinding value to prevent an impersonation attack.

The main observation given in this paper is that if a differentially uniform
mapping is used in the generation of implicit certificates then the impersonation
attack does not work. This indicates that the proof of knowledge of the dis-
crete logarithm could be eliminated and the performance of the protocol could
be improved. It is anticipated that the solution herein can also be applied to
other cryptographic protocols and schemes based on the difficulty of the discrete
logarithm problem.

We start by proving the differential uniformity property of elliptic curves.
Sec. 2 contains background information on elliptic curves. Elliptic curve point
addition differentials with respect to taking x-coordinates are studied in Sec. 3,
and differential uniformity properties thereof proved. In Sec. 4 we review the
implicit certificate scheme by Ateniese and de Medeiros and the impersonation
attack against it. The new partially blind NR signatures are presented in Sec. 5,
and a security property based on differential uniformity is proved. We conclude
in Sec. 6.

2 Elliptic Curves

In general, elliptic curves over an arbitrary field K are defined by the Weierstrass
equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 . (1)

An Abelian group can be formed from the points on the curve along with the
point O, which serves as the identity element. A line through two points on the
curve (or a line tangent to the curve if the two points are the same) intersects
the curve at only one other point.

As stated, K can be any field. However, elliptic curves used in cryptography
[6,7] are defined over a large prime field Fp or large binary field F2m where the
order of an elliptic curve E (denoted #E) is large and nearly prime. This allows
for the creation of elliptic curve analogues of common schemes, e.g. ECDSA and
DSA [8].

2.1 Elliptic Curves over Prime Fields

Over Fp with p > 3 and prime, every elliptic curve is isomorphic to a curve given
by

y2 = x3 + ax+ b. (2)

Point Addition and Doubling. The sum of two points P = (x1, y1) and Q =
(x2, y2) is calculated as follows.

x3 = λ2 − x1 − x2 (3)
y3 = λ(x1 − x3)− y1, where
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λ =

⎧⎪⎨⎪⎩
y2 − y1
x2 − x1

if P �= Q

3x12 + a

2y1
if P = Q

(4)

Here λ is the slope determined by P and Q.

2.2 Elliptic Curves over Binary Fields

Over F2m , every elliptic curve1 is isomorphic to a curve given by

y2 + xy = x3 + ax2 + b. (5)

Point Addition and Doubling. The sum of two points P = (x1, y1) and Q =
(x2, y2) is calculated as follows.

x3 = λ2 + λ+ x1 + x2 + a (6)
y3 = λ(x1 + x3) + y1 + x3, where

λ =

⎧⎪⎨⎪⎩
y2 + y1
x2 + x1

if P �= Q

x1 +
y1
x1

if P = Q
(7)

As above, λ is the slope determined by P and Q.

3 Elliptic Curve Point Addition Differentials

In what follows, it is shown that the mapping which maps a point of an elliptic
curve to its x-coordinate is differentially uniform, or formally (as illustrated in
Fig. 1)

max
d∈F,D∈E(F)\{O}

#{P ∈ E(F) \ {O,−D} | (P +D)x − Px = d}

is sufficiently small. Due to the nature of elliptic curves, this definition differs
slightly from the one presented more generally later (Sec. 5.1, Def. 2); in particu-
lar, the x-coordinate of the identity element O (point-at-infinity) is not defined.

The two cases of elliptic curves for cryptographic use over prime fields and
binary fields are explored. How to use these results in practice will be discussed
later in Sec. 5.2.

Theorem 1. On an elliptic curve E over a prime field Fp, given an arbitrary
but fixed point D ∈ E(Fp) \ {O} and field element d ∈ Fp, the number of points
P ∈ E(Fp) \ {O,−D} such that (P +D)x − Px = d holds is at most 4.

1 Only non-supersingular curves are considered here.
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Fig. 1. Elliptic curve point addition differential over R

Proof. Let x, y denote the x and y coordinates of P and u, v of D. Given (3),

(P +D)x = λ2 − x− u

(P +D)x = d+ x

}
−→ 2x = λ2 − u− d (8)

where λ is the slope. Clearly λ(x − u) = y − v from (4) holds in both the cases
of P �= D and P = D, so substituting in (8) yields

2y = λ(2x− 2u) + 2v = λ3 − 3λu− λd+ 2v. (9)

As both points P and D are on the curve, they both satisfy (2). The difference
of these two equations is

y2 − v2 = x3 + ax− u3 − au, which factors into

(y − v)(y + v) = (x− u)(x2 + xu + u2 + a), and given (4),

(y + v)λ = x2 + xu+ u2 + a. (10)

Clearly this holds for P �= D. If P = D, then x = u and y = v and the last
equation gives the same expression for λ as (4) and thus it holds for P = D as
well. We now eliminate x and y from (10) by substituting in (8) and (9) and
simplifying, which yields

λ4 − 6uλ2 + 8vλ− 3u2 − d2 − 4a = 0.

As this equation has degree four, there are at most four solutions for λ. More-
over, P = (x, y) is uniquely determined given λ,D = (u, v), d. Specifically, x is
calculated from (8) given λ, d, u; y is calculated from (9) given λ, u, v, d. Thus,
there are at most four different points P which satisfy this equation. ��
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Theorem 2. On an elliptic curve E over a binary field F2m , given an arbitrary
but fixed point D ∈ E(F2m) \ {O} and field element d ∈ F2m , the number of
points P ∈ E(F2m) \ {O,−D} such that (P +D)x − Px = d holds is at most 4.

Proof. The same notation as above is used. Given (6),

(P +D)x = λ2 + λ+ x+ u+ a

(P +D)x = d+ x

}
−→ λ2 + λ+ u+ a+ d = 0

As this is a quadratic equation, there are either two or zero solutions for the
slope λ, and therefore at most two lines passing through D with these given
slopes. A line through D intersects the curve in at most two other points. This
gives a total of at most four points. ��

4 Implicit Certificates and Impersonation Attacks

We use multiplicative group notation throughout this and the following section
unless specified otherwise. The group is denoted by 〈G〉 where G is the gener-
ator element of the group. The order of the group is denoted by q, and in our
application it is typically selected to be a prime. The digital signature schemes
discussed in this paper are based on the difficulty of the discrete logarithm prob-
lem in 〈G〉. Given a private key v ∈ Zq the public key is computed as V = Gv.
The digital signature schemes also make use of a hash function h, which maps
strings of arbitrary length to Zq and is assumed to be secure under preimage,
second preimage and collision attacks. The signatures also make use of a projec-
tion p (or p1), which maps elements of 〈G〉 to Zq. The security properties of the
projection are in the main focus of this paper.

4.1 Modified NR Signature Scheme

In [4] Ateniese and de Medeiros presented a modification (mNR) of the Nyberg-
Rueppel (NR) signature scheme. In addition to G and q, the system parameters
include a group element G1 such that the discrete logarithm of G1 to the base
G is known neither to the signer nor to potential forgers of signatures. To sign
a message m with hash code h = h(m), the signer takes a random k ∈ Zq,
computes R = GkGh

1 , r = p1(R), and s = −k−vr (mod q). The signed message
is (m,R, s). The verification of a signed message (m,R, s) is based on checking
the equality Gh

1 = RGsV r.
In [4], two types of implementations were considered where the finite group

〈G〉 can be either the multiplicative group of a finite field or the group of K-
rational points on an elliptic curve over a finite field K. In the former case
the projection p1 is the canonical embedding of the multiplicative group to the
field. In the latter case, the projection p1 first computes the compression of the
point R = GkGh

1 to obtain one bit for the y-coordinate and a field element as
the x-coordinate. The x-coordinate is then considered as a bit-string to which
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the y-coordinate bit is prepended. This string is then converted to an integer,
which is then reduced modulo q.

While a security proof is given for the mNR scheme, its application to implicit
certificates implies new security requirements that are not covered by the security
properties of the mNR scheme. The problem lies in the fact that when generating
an implicit certificate, the TTP actually generates a signature on a message that
consists of two parts: the public key of the user U = Gu submitted by the user
with identity ID, and the identity ID. The ID part is handled as the message
m in the mNR scheme, but the public key is integrated in the first part R of
the signature to be recovered in the verification of the signature, similarly as
messages are recovered in the original NR scheme.

As suggested in [4] by submitting a suitable U to the TTP a malicious user
can forge an implicit certificate on any identity and on a public key selected by
the user. The implicit certificate scheme based on the mNR scheme is discussed
next in more detail.

4.2 Implicit Certificates

As an application of the mNR signature scheme, a public key issuing protocol
with implicit certificates was presented in [4]. Implicit certificates are comprised
of a user’s identity and some reconstruction public data, which together with
the TTP’s public key is used to reconstruct the user’s public key [9].

To prevent key escrow of the private keys, a blinding value is used. For the
implicit certificate to be useful to the submitter of the public key request, the
discrete logarithm of the blinding value must be known by the submitter.

Let sigu and verU denote the algorithms for signature generation with private
key u and verification with public key U of a signature scheme where the gener-
ated keys are intended to be used. Given an identity IDA of Alice, the following
protocol is executed between Alice and the public key issuer TTP with private
key v and public key V . The hash function h1(·) used below is short notation
for Gh(·)

1 .

TTP←− Alice: GkA

Alice ←− TTP: C
TTP←− Alice: sigkA(C)

TTP: verGkA (sigkA(C))

Alice ←− TTP:

{
RA = GkAGk

h1(IDA)
sA = −k − vp1(RA) (mod q)

(11)

Alice’s private key is sA = sA−kA (mod q). The implicit certificate is RA. Given
the triple {RA, IDA, V }, Alice’s public key GsA extracts correctly:

h1(IDA)
V p1(RA)RA

=
h1(IDA)

Gvp1(RA)GkAGk
h1(IDA)

= Gk+sA−sA+sA−k = GsA
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The second and third messages of the protocol are exchanged because Alice must
prove her knowledge of the secret exponent kA. For this purpose, TTP issues
a challenge message C. Alice then signs this message using key kA and TTP
verifies this signature using public key GkA (the element that Alice submitted).

The proof of possession is done in order to prevent a straightforward imper-
sonation attack which goes as follows. Instead of sending an exponential with a
known exponent, the attacker selects a suitable value that allows forgery of the
identity. Consider a malicious, but legitimate user Malice attempting to obtain a
valid signature from TTP on Alice’s identity using (11) where no proof of knowl-
edge is performed. To succeed, Malice, with identity IDM , chooses a difference2

D such that the value of p1(RA) which represents the data to be signed by the
TTP is not changed if the identity is changed. This holds if

DGkMGk
h(IDM ) = GkMGk

h(IDA) , that is,

D =
h1(IDA)
h1(IDM )

. (12)

Thus, by submitting DGkM instead ofGkM Malice obtains a public key on Alice’s
identity with a private key known to Malice. Hence in both implementations,
either a multiplicative group of a finite field or an elliptic curve, an attacker can
compute the difference D for any selected target identity IDA.

4.3 Thwarting Impersonation Attacks

Let us consider a slight modification to the implicit certificates discussed above.
Instead of (11) let the output from TTP to Alice be computed as follows:

Alice ←− TTP:

{
RA = GkAGk

sA = −k − v(p1(RA) + h1(IDA)) (mod q).
(13)

If Malice wants to launch a similar impersonation attack against this scheme,
he should find a difference D such that by submitting DGkM instead of GkM he
has

p1(DGkMGk) + h(IDM ) = p1(GkMGk) + h(IDA), that is,

p1(DGkMGk)− p1(GkMGk) = h(IDA)− h(IDM ). (14)

Here Gk is a random group element, which the TTP generates after Malice
has submitted its blinding value DGkM . The main result of this paper is to show
that if the projection p1 is differentially uniform, then it is unlikely that Malice
will succeed.

Another solution to prevent impersonation attacks previously presented in the
literature in the context of signatures providing partial message recovery [10,11],

2 The term difference in this sense is as used in differential cryptanalysis and also for
quotients in multiplicative groups.
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is to use a hash function. This solution is outlined in Appendix A. But in order to
prove that the impersonation attack does not work, non-standard assumptions
of the hash function may be required. Another drawback of the hash-function
based solution is that it slows down signature generation, as the hash function
must be computed online.

In the next section we analyze our solution in more detail in the context of
partially blind signatures. Our solution allows a concrete security proof and does
not require online computation of a hash function.

5 Partially Blind Signatures

Partially blind signatures to be discussed next have applications wherever the
message is split into two parts: a blinded part and a part known to the signer. The
purpose of such a signature is to prove that the signer approves the known part
of the message as valid and provide a binding between the blinded and known
parts of the message. A typical example would be a time-stamping application
where data in encrypted form is submitted at a certain time to be time-stamped.
Thus, a binding between the time and the data is provided by a blind signature.
In this paper the application is the implicit certificate scheme, where the signer
is TTP and a binding between the identity of the user and the user’s public key
is provided without seeing the private key.

Usually only a small proportion of all possible blinded data is useful to the
user. The threat model is that a malicious user can submit as blinded data
something that makes it possible to apply the binding created by the signer to
different data that is more useful to the user. For example, it is important to
guarantee that the attacker cannot, by submitting garbage at a certain time,
obtain a binding between a time-stamp (with a different time on it) and some
meaningful data.

Undoubtedly, signature schemes realizing such bindings between different mes-
sage parts is an interesting cryptographic primitive and would deserve a formal
general treatment. However, for the purposes of this paper we restrict ourselves
to the NR signature scheme giving partial message recovery, which is used by
the TTP to generate the signatures in (11) and (13).

To describe this signature scheme we use the same notation as in Sec. 4. To
sign the message (m,B), where B ∈ 〈G〉 represents the blinded part of the
message, the signer takes a random k ∈ Zq, computes

R = GkB ,

r = f(R,m) and
s = −k − vr (mod q). (15)

The signed message is (m,R, s). The function f maps group elements R and
messages m to integers in Zq. In the verification B is recovered from (m,R, s)
by computing r = f(m,R) and using

GsV rR = Gs+rv+kB = B.
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It is not essential to restrict to NR signatures; similar partially blind signatures
can be obtained using the PECDSA scheme [11] with message recovery as shown
in Appendix B.

5.1 Security of Partially Blind NR Signatures

The partially blind signatures are used as follows: a user creates a message
(m,B), where m is the known part and B is the blinded part of the message,
and submits them to the signer who generates the signature (R, s).

For the same reason why digital signatures giving message recovery are vulner-
able to existential attacks, it is clear that partially blind signatures are vulnerable
to existential attacks. Furthermore, it is easy to see that for any given messages
m and m̂ it is possible to find B and signatures (R, s) of (m,B) and (R̂, ŝ) of
(m̂, B) by submitting only one of the messages to the signer. However, if the
blinded parts B are restricted to a subset B of 〈G〉, one can obtain a reasonable
and useful security definition. The security of partially blind signatures is consid-
ered with respect to this subset B. In the application of implicit certificates, the
set B is the set of group elements for which a user knows the discrete logarithm.
In the time stamping application, B consists of the encryptions of meaningful
data to be time-stamped. Hence we allow that given B ∈ 〈G〉, the signer is not
able to tell whether B ∈ B or not. Next we state the main security requirement
of partially blind signatures.

Definition 1. Partially blind NR signatures with function f and set B are said
to be secure against message forgery if it is infeasible to find B ∈ B, messages m
and m̂, m �= m̂, and a group element B̂ ∈ 〈G〉 such that by submitting (m̂, B̂) to
the signer and obtaining a valid signature to it, the user obtains a valid signature
for (m,B).

The security definition requires that the known part m cannot be forged. Note
that changing the blinded part B is easy: if (R, s) is a signature on a message
(m,B), then (R, s+ e mod q) is a signature on (m,GeB).

On the other hand, if we had a partially blind NR signature scheme that
satisfies Definition 1 with B being the set of group elements for which a user
knows the discrete logarithm, we would have a scheme for implicit certificates
where the proof of knowledge of the discrete logarithm is not needed to prevent
the impersonation attack.

We observe that forgeries violating the security definition can be divided into
two categories:

Attack 1. Given a valid signature (R̂, ŝ) on a message (m̂, B̂) possibly chosen
by the adversary, generate without knowledge of the private key a valid signature
(R, s) for a message (m,B), where B ∈ B and r̂ = f(m̂, R̂) �= f(m,R) = r.

Attack 2. Given a valid signature (R̂, ŝ) on a message (m̂, B̂) possibly chosen
by the adversary, generate without knowledge of the private key a valid signature
(R, s) for a message (m,B), where B ∈ B and r̂ = f(m̂, R̂) = f(m,R) = r.
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The goal of this paper is to prove resistance against Attack 2 where r is kept
unchanged. This is the kind of attack that was discussed in Sec. 4. To justify
security against Attack 1 we present only informal arguments. Partially blind
signatures can be considered as a combination of two well established signature
schemes: the NR scheme giving message recovery, and the NR signature scheme
using hash functions. In the message recovery case, the message partm is omitted
(h(m) = 0), and in the latter case the recovered part B is omitted (B = 1). We
believe that resistance against Attack 1 is independent of the way the message
input is formatted, and therefore inherited to partially blind signatures from the
underlying signature scheme.

On the other hand, resistance against Attack 2 clearly depends on the function
f . As shown in Sec. 4.2 the function f(m,R) = p1(Rh1(m)) used in generating
the signatures by TTP in (11) is vulnerable to Attack 2.

Next we show that the function f(m,R) = p(R) + h(m)(modq) used in (13)
can give resistance against Attack 2 depending on the properties of p. The prop-
erty we are going to need is differential uniformity defined in [2] as follows.

Definition 2. Let G1 and G2 be two groups and p a function from G1 to G2. Let
δ be a positive integer. We then say that the function p is differentially δ-uniform
if for all D1 ∈ G1, D1 �= 1, and D2 ∈ G2 it holds that

#{X ∈ G1 |
p(D1X)
p(X)

= D2} ≤ δ.

Theorem 3. Consider the partially blind NR signature scheme described in (15)
with function f defined as f(m,R) = p(R) + h(m)(modq), where h is a secure
hash function, and with a set B. Suppose that the projection p from 〈G〉 to Zq is
differentially δ-uniform and let ω describe the computational bound of the work
of the adversary. Then the probability that Attack 2 succeeds and a blind NR
signature is forged on one message (m,B), where B ∈ B, is at most (#B+δω)/q.

Proof. The success probability of an existential attack is upperbounded by #B/q.
Let us now suppose that when running Attack 2, the adversary selects a blinded
part B, where B ∈ B and generates a message (m̂, B̂), where B̂ ∈ 〈G〉 and
submits it to the signer. Then the attacker gets a signature (R̂, ŝ), where R̂ =
Gk̂B̂ and Gk̂ is a random group element generated by the signer. Suppose now
that from here the adversary can compute a valid signature (R, s) on (m,B) for
some message m �= m̂. Then in Attack 2 the following holds

p(R) + h(m) ≡ p(R̂) + h(m̂) (modq). (16)

If s �= ŝ we can replace B̂ by B̂Gs−ŝ to get a valid signature (R̂, s) for a message
B̂. Hence we can assume that s = ŝ without loosing generality. As also r = r̂, it
then follows that

R

R̂
=
B

B̂
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and hence this quotient is a group element determined by the submitted value
of B̂. Let us denote

D =
B

B̂
and d = h(m̂)− h(m)(modq),

where d is a quantity fixed by the selection of m. Then we get from (16) that

p(R̂D)− p(R̂) ≡ d (mod q) (17)

holds for R̂. As p is differentially δ-uniform there are at most δ such elements
R̂ in 〈G〉. Based on one submitted value B̂ the adversary can try only a limited
number, say σ, different values of B̂Gs−ŝ by changing s. This means that the
adversary can try to establish (17) for only σ different D. Similarly, by varying
m the adversary can try to establish (17) for a number, say μ different values of
d. As R̂ is a random element in a group of order q the probability of success for
each fixed pair D and d is upperbounded by δ/q. The number of different pairs s
and m to be tried is upperbounded by σμ ≤ ω. It follows that adversary’s success
probability for a fixed B ∈ B is upperbounded by δω/q. The claimed upperbound
follows by taking the probability of the existential attack into account. ��

5.2 Differentially Uniform Projections

Let p be a prime and G a generator of the multiplicative group modulo p. Then
for all R and D in 〈G〉 we have RD − R ≡ R(D − 1) (mod p). For a fixed
difference D, D �= 1 this value runs through the entire group as R varies. Hence
the canonical embedding from the multiplicative group of Zp to the additive
group of Zp is differentially 1-uniform.

Let ε be the smallest integer such that p ≤ εq. Given d ∈ Zq, let x and y
∈ Zp be such that x − y ≡ d (mod q). Then −p < x − y < p from where it
follows that x− y may take 2ε− 1 different values, that is, x− y = d+ iq, where
i ∈ {−ε + 1, . . . ,−1, 0, 1, . . . , ε − 1}. This gives at most 2ε − 1 values of x − y
modulo p. It follows that the mapping from the multiplicative group of Zp to
the additive group Zq is differentially δ-uniform with δ = 2ε− 1.

In Sec. 3 it was shown that the projection which maps elliptic curve point to
its x-coordinate is differentially 4-uniform. For elliptic curves over prime fields
(for prime p) it then follows that the projection p is differentially 4δ-uniform
with δ = 2ε− 1.

The canonical mappings from the multiplicative group of a binary field and
from an elliptic curve over a binary field to the additive group (with exclusive-or
addition) of the field are differentially uniform. The problem arises when the
string in the binary field is converted to an integer and then reduced modulo q.
In general, a fixed integer difference can be taken by pairs of field elements with a
number of different differences with respect to exclusive-or addition. In differen-
tial cryptanalysis of block ciphers, a common albeit heuristic assumption is that
a composition of two essentially different functions, of which one is differentially
uniform, is also differentially uniform. However, what essentially different means
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in this context lacks precise definition. Hence we can only conjecture that the
projection p is differentially δ-uniform with a small constant δ in the case of a
binary field as well. This conjecture is also supported by our experiments.

6 Conclusion

In this paper, we proved that the canonical mapping on an elliptic curve that
maps a point to the x-coordinate of the point is differentially uniform. This
property has previously been known for mappings that map the elements of
the multiplicative groups of a finite field to the additive group of the field. We
also proposed a potential application of this property to enhance the security
of the implicit certificate scheme by Ateniese and de Medeiros. In particular,
we proved that if differential uniform projections are used when computing the
signatures then the certificates issued on a certain identity cannot be misused
to provide certificates to some other identity. We achieve this property without
the use of key escrow. The proof is valid when the implicit certificate scheme
is implemented in a multiplicative group of a prime field or on an elliptic curve
over a prime field. It remains an open question whether this result holds also in
the case of a binary field.

Our results indicate that the property of differential uniformity can be useful
for enhancing the security and efficiency of protocols and schemes based on
asymmetric cryptography. It would be interesting to find more such applications.
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A Avoiding Proof of Possession Using a Hash Function

The proof of possession of the discrete logarithm of the submitted value can be
avoided by providing a stronger binding between the two message parts under the
signature. One solution, previously presented in the literature in the context of
signatures providing partial message recovery [10], [11], is to use a hash function.

We first recall the provably secure signature scheme PECDSA by Louis
Granboulan presented in [11]. PECDSA is intended for implementation on ellip-
tic curves with the projection p that maps the point first on its x-coordinate, and
then to Zq. The scheme makes use of a redundancy function ρ that adds neces-
sary redundancy to the part of the message that is recovered in the verification
procedure. For a given message m̄, redundancy is added as ρ(m̄) = (m̄||0...0),
where the number of zeroes is determined by the security parameter.

To sign the message (m̂, m̄), where m̄ is the recoverable part in Zq, the signer
takes a random k ∈ Zq, computes R = Gk, r = ρ(m̄) ⊕ p(R), h = h(m̂, r) and
s = v−1(k − (h ⊕ r)) (mod q). The signed message is (m̂, r, s). The verification
of (m̂, r, s) begins with computation of h = h(m̂, r). Then R is recovered as
R = Gh⊕rV s. Finally, the verifier checks that the redundancy of the message m̄
recovered from r ⊕ p(R) satisfies ρ(m̄) = r ⊕ p(R). Then PECDSA is provably
secure against existential forgery assuming that 〈G〉, h and p are idealized in a
manner specified in [11].

Using a hash function as above, we can replace (11) with the following.

TTP: RA = GkAGk

r = h(RA, IDA)⊕ p(RA)
sA = −k − vr (mod q)

Alice ←− TTP: {RA, sA} (18)

Alice’s private key is sA = sA−kA as before. The implicit certificate is RA. Given
the triple {RA, IDA, V }, Alice’s public key GsA is now extracted by computing
r from IDA and RA and then computing V −rR−1

A = GsA .

http://eprint.iacr.org/2002/172
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The attack described in Section 4.2 does not seem to work anymore. But in
order to prove that it does not work, non-standard assumptions on the hash
function may be required. Another drawback of the hash-function based solu-
tion is that it slows down signature generation, as the hash function must be
computed online.

B Partially Blind Signatures Based on PECDSA

Let us discuss the following modification of PECDSA. Given a message (m,B)
the signature is (R, s) where

R = GkB

r = h(m) + p(R) (mod q)
s = v−1(−k − r) (mod q).

If the projection p is differentially uniform then secure partially blind signatures
can be obtained. To achieve this we have removed the value R from the inputs of
the hash function h of the original PECDSA scheme. By doing this, the provable
security may be lost. It is an open problem if there is a provable secure signature
scheme giving partial message recovery where the recoverable part is blinded and
Attack 2 is infeasible.
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Abstract. In the current work we propose two efficient formulas for
computing the 5-fold (5P ) of an elliptic curve point P . One formula
is for curves over finite fields of even characteristic and the other is for
curves over prime fields. Double base number systems (DBNS) have been
gainfully exploited to compute scalar multiplication efficiently in ECC.
Using the proposed point quintupling formulas one can use 2, 5 and 3,
5 (besides 2, 3) as bases of the double base number system. In the cur-
rent work we propose a scalar multiplication algorithm, which uses a
representation of the scalar using three bases 2, 3 and 5 and computes
the scalar multiplication very efficiently. The proposed scheme is faster
than all sequential scalar multiplication algorithms reported in literature.

Keywords: Elliptic Curve Cryptosystems, Scalar Multiplication,
Quintupling, Efficient Curve Arithmetic.

1 Introduction

Undoubtedly, the papers [25,28], which independently proposed elliptic curve
cryptography (ECC), are among the most cited papers in cryptology. In ECC,
elliptic curves over finite fields are used to generate finite abelian groups to
implement public key cryptographic primitives. The advantage of using elliptic
curve groups is: there is no known subexponential algorithm to solve the elliptic
curve discrete logarithm problem (ECDLP). This means that a desired security
level can be achieved with a much smaller key size in comparison to other public
key schemes. This, in turn, leads to efficient implementation and efficient use of
transmission bandwidth. Another advantage of ECC is the flexibility it offers in
the choice of various security parameters (like group order and representation of
its elements, group arithmetic, underlying field and its representation etc) used
in its implementation.

Scalar multiplication of elliptic curve points is one of the most researched
operations in cryptography. If P is a point on an EC and d is an integer, the
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operation computing the d-fold of P , namely the point dP , is called scalar mul-
tiplication. Several methods have been reported in literature to compute scalar
multiplication efficiently and securely from prying eyes (side-channel attackers).
The strategies used for enhancement of efficiency are: (1) efficient group arith-
metic in the elliptic curve group, (2) using a “nice” representation for the scalar
(the sparser, the better), (3) use of precomputation to precompute some points
required later (4) using efficient algorithms like the sliding window method, comb
methods or use of efficient addition chains, like Montgomery’s ladder etc.

In the current work, we propose a new scalar multiplication algorithm, the
essence of whose efficiency comes from two new efficient point quintupling for-
mulas for curves over arbitrary prime and binary fields and use of a very sparse
representation of the scalar using three bases. For the last couple of years, double
base number systems (DBNS) have been proposed for use in this context by sev-
eral authors [1,2,8,12,13,16]. For general curves, a DBNS representation of the
scalar using 2 and 3 as bases has been proved quite efficient [12]. In search of sub-
linear scalar multiplication algorithms, authors of [1] have used complex bases,
3 and τ for Koblitz curves. However, their proof of sublinearity has some flaws.
In [13], the authors have proved that a sublinear algorithm is indeed possible
using three bases, namely τ , τ − 1 and τ2 + τ + 1. Their software and hardware
implementations using two bases τ and τ − 1 are fast enough to give the feeling
of a sublinear algorithm, but it lacks a theoretical proof. In [16], authors have
used the precomputations to obtain further speed-ups. In this work, we repre-
sent the scalar using a generalization of DBNS representation, namely, multibase
number representation. The exponent scalar is represented as a sum/difference
of products of powers of 2, 3 and 5.

Our Contributions: The main contribution of this work is a set of two formulas
for computing 5-fold (5P ) of an elliptic curve point P , one for curves over binary
fields and the other for curves over prime fields. These formulas can be used to
compute the scalar multiples using quinary or DBNS expansion (using 2,5 or
3,5 as bases) of the scalar. We also generalize the algorithm used to compute
scalar multiplication in double base [12] to accommodate a third base, namely,
5. Thus, the proposed scalar multiplication algorithms use a representation of
the scalar as sum/difference of product of powers of 2, 3 and 5. Experimental
evidences indicate it is faster than all scalar multiplication algorithms known
so far for general curves over large prime fields. For general curves over binary
fields, our algorithm performs quite competitively.

2 Background

In this section, we briefly outline the materials used as a prerequisite for this
work. Interested readers can consult the cited works to check details.

2.1 ECC

In this section, we give a brief overview of elliptic curve cryptography. Details
can be found in [3,4,5,20].
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Definition. An elliptic curve E over a field K is defined by an equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)

where a1, a2, a3, a4, a6 ∈ K, and Δ �= 0, where Δ is the discriminant of E.

Applying admissible changes of variables, the Weierstrass equation (1) can be
simplified. Over prime fields, K = Fp, of large characteristic (≥ 2, 3), the equa-
tion (1) can be simplified to

y2 = x3 + ax+ b, (2)

where a, b ∈ K and Δ = 4a3 + 27b2 �= 0.
Over binary fields K = F2m , the non-supersingular curves are used for cryp-

tography, whose Weierstrass equation can be simplified to the form:

y2 + xy = x3 + ax2 + b, (3)

where a, b ∈ K and Δ = b �= 0.
The set E(K) of rational points on an elliptic curve E defined over a field K

forms an abelian group, under the operation (denoted additively) defined by the
secant and tangent law. The special point O, called the point at infinity plays
the role of identity in this group.

The most natural representation for a point on an elliptic curve group is
the affine representation, i.e., by an ordered pair of field elements satisfying the
equation of the curve. However, group operations in affine representation require
field inversions, which are the most expensive among field operations. To avoid
inversions, several point representations in homogeneous (projective) coordinates
have been proposed in the literature. The choice of a coordinate system for point
representation in the elliptic curve group largely depends upon the so-called
[i]/[m]-ratio, the ratio between the cost of a field inversion to that of a field
multiplication. It is generally assumed that for binary fields 3 ≤ [i]/[m] ≤ 10
and but it is significantly higher (30 or more) for prime fields [18]. Therefore, in
this paper we consider affine (A) coordinates for curves defined over binary fields
and Jacobian (J ) coordinates, where the point P = (X : Y : Z) corresponds to
the point (X/Z2, Y/Z3) on the elliptic curve for curves defined over prime fields.

To denote cost of field operations, we will use [i], [s] and [m] to denote the
cost of one inversion, one squaring and one multiplication respectively. We shall
always neglect the cost of field additions. Also, over binary fields, we will neglect
squarings as they are almost free (if normal bases are used) or of negligible cost
(linear operation) (see [21] for more details). Moreover, over large prime fields,
we will assume that [s] = 0.8[m].

For curves over binary fields, we will use several elliptic curve group operations
along with the quintupling operation presented in Section 3. These formulas have
been listed in Table 1. We have included only those algorithms which will be
used in this work. One operation needs a special mention: a repeated doubling
formula (w-DBL) for these curves, originally proposed by Guajardo and Paar
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Table 1. Costs of various Elliptic Curve group operations. The costs for curves over
binary fields (E(F2m)) are in affine coordinates. Those for curves over prime fields
(E(Fp)) are in Jacobian coordinates.

Operation Output For E(F2m) For E(Fp)
proposed Cost proposed Cost

DBL(P ) 2P − 1[i] + 2[m] − 6[s] + 4[m]
ADD(P, Q) P + Q − 1[i] + 2[m] − 4[s] + 12[m]
mADD(P, Q) − − − [9] 3[s] + 8[m]
w-DBL(P ) 2wP [11] 1[i] + (4w − 2)[m] [22] 4w[m] + (4w + 2)[s]
DA(P,Q) 2P ± Q [7] 1[i] + 9[m] − -
TPL(P ) 3P [7] 1[i] + 7[m] [12] 10[m] + 6[s]
w-TPL 3wP − − [12] 10w[m] + (6w − 5)[s]
TA(P, Q) 3P ± Q [7] 2[i] + 9[m] - -

in [19] and subsequently improved by Lopez and Dahab in [11], which requires
just one inversion to compute 2wP,w ≥ 1.

For curves over prime fields of large characteristics, we will use Jacobian
coordinates (J ). The following formulas for group arithmetic are available to
us: DBL, w-DBL, TPL, w-TPL and ADD, which compute 2P, 2wP, 3P, 3wP and
P +Q respectively. Also, if the base point is given in affine coordinates (Z = 1),
then the cost of the so-called mixed addition (mADD) (J + A → J ) requires
fewer computations than generic addition. Also, DBL and TPL are less expensive
when a = −3 in (2). In Table 1, we summarize the complexity of these different
elliptic curve formulas.

All ECDLP based cryptographic primitives, like encryption, decryption, sig-
nature generation and verification, need the operation of scalar multiplication.
Given an integer d and an elliptic curve point P , it is the operation of computing
dP . Efficiency of the scalar multiplication depends largely upon efficiency of the
algorithms used for group arithmetic and representation of the scalar. In this
work, we present two new algorithms for efficient group arithmetic and a new
representation of the scalar using three bases. This combination considerably
accelerates the computation of scalar multiplication in ECC.

2.2 Multibase Representation of an Integer

Let k be an integer and let B = {b1, · · · , bl} be a set of “small” integers. A
representation of k as a sum of powers of elements of B (Σm

j=1sjb
ej1
1 · · · bejl

l ,
where sj is sign) is called a multibase representation of n using the base B.
The integer m is the length of the representation. Double base representation
or double base number system (DBNS) [14,15,12] is a special case with |B| = 2.
In the current article we are particularly interested in multibase representations
with B = {2, 3, 5}.

The double base number system is highly redundant. Also, these representa-
tions are very short in length. The multibase representations are even shorter
and more redundant than the DBNS. The number of representations of n grows
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Table 2. Number of multibase representation of small numbers using various bases

n B = {2, 3} B = {2, 5} B = {2, 3, 5} B = {2, 3, 5, 7}
10 5 3 8 10
20 12 5 32 48
50 72 18 489 1266
100 402 55 8425 43777
150 1296 119 63446 586862
200 3027 223 316557 4827147
300 11820 569 4016749 142196718

very fast in the number of base elements. For example, 100 has 402 DBNS rep-
resentations (base 2 and 3), 8425 representations using the bases 2, 3 and 5
and has 43777 representations using the bases 2, 3, 5, and 7 (considering only
positive summands, i.e. sj = 1). The number of representations for some small
integers n have been provided in Table 2. The multibase representation are very
sparse also. One can represent a 160 bit integer using around 23 terms using
B = {2, 3} and around 15 terms using B = {2, 3, 5} (see [14] for a result on
length of DBNS representations).

In this article, unless otherwise stated, by a multibase representation of n we
mean a representation of the form

n = Σisi2bi3ti5qi

where si = ±1. We will refer to terms of the form 2a3b5c as 3-integers. A
general multibase representation, although very short, is not suitable for a scalar
multiplication algorithm. So we are interested in a special representation with
restricted exponents.

Definition: A multibase representation n = Σisi2bi3ti5qi using the bases B =
{2, 3, 5} is called a step multibase representation (SMBR) if the exponents {bi},
{ti} and {pi} form three separate monotonic decreasing sequences.

Needless to mention, an integer n has several SMBR’s, the simplest one being
the binary representation. If n is represented in SMBR, then we can write it
using Horner’s rule and an addition chain (like Double-base chain in [12]) for
scalar multiplication can easily be developed.

Conversion to SMBR. An integer can be converted to a multibase represen-
tation using Greedy Algorithm:

Greedy Algorithm
while(k >0)
let z be the largest number 2b3t5p ≤ k;
output (b, t, p)
replace k by k − z

endwhile

The greedy algorithm produces near canonical (shortest) representations. We can
implement the approximation step of the algorithm by using a three index array
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T [0..max2, 0..max3, 0..max5], where the array element T [i, j, k] is 2i3j5k and
max2 max3 max5 are maximum possible powers of 2, 3, and 5 respectively. To
represent a 160 bit integer, if one chooses max2 = 160, max3 = log3 160 ≈ 103
and max5 = log5 160 ≈ 70. greedy algorithm returned multibase representations
with 15 terms on the average. Although, these representations are very sparse,
they are not in SMBR. Algorithm mGreedy as described in below converts an
integer into SMBR. mGreedy terminates because k gets reduced in each iteration.

Algorithm 1. mGreedy Algorithm for Conversion into SMBR
Input: k a positive integer; max2,max3,max5 > 0, the largest allowed binary,

ternary and quinary exponents and the array T [0..max2; 0..max3; 0..max5].
Output: The sequence (si, bi, ti, pi)i>0 such that k =

∑m
i=1 si 2bi 3ti 5pi , with b1 ≥

. . . ≥ bm ≥ 0, t1 ≥ . . . ≥ tm ≥ 0, p1 ≥ . . . ≥ pm ≥ 0.
1: s ← 1
2: while k > 0 do
3: for(b=0 to max2, t=0 to max3, p=0 to max5)

z = T [b, t, p], the best approximation of k
4: print (s, b, t, p)
5: max2 ← b, max3 ← t, max5 ← p
6: if k < z then
7: s ← −s
8: k ← |k − z|

Improving Performance of mGreedy. Algorithm mGreedy can be improved
on two fronts: we can modify it to (1) obtain shorter representations and (2) run
faster.

Obtaining Shorter Representations. Looking at the outputs of mGreedy one
observes that the average length of the representations become higher because
in some of the representations are lengthy. In these lengthy representations, one
observes that, one or two of the three exponents in the leading term is (are) very
small. If a particular exponent in the leading term is small, it becomes 0 very
quickly and the representation reduces to a DBNS representation thereafter.
If two of the exponents become 0 very quickly, then the representation even
degenerates to a single base representation. We can overcome this shortcoming
of mGreedy as described below.

Let c1, c2 and c3 be three fractions less than 1. Let x = 2b3t5p be the best ap-
proximation for k in some iteration. Then in the next iteration mGreedy replaces
max2 by b, max3 by t and max5 by p and searches for the best approximation
for k − x in T [0..max2; 0..max3; 0..max5] again. Instead of searching the ar-
ray T [ ], from [0, 0, 0] to [max2,max3,max5] we now restrict the lower limit to
[c1×max2, c2×max3, c3×max5]. This does not allow any exponent to become
very small at once and prevents the representation from degenerating into a
single or double base format. Also, the new algorithm runs faster as the search
space in each iteration is smaller than the unrestricted version. With this restric-
tion, the mGreedy (with max2 = 160, max3 = 103, max5 = 70, c1 = .4.c2 = .3;
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c3 = .25) returns an SMBR of average length less than 30 terms for integers of
160 bits (almost 20 % shorter).

Improving Run Time. Algorithms Greedy and mGreedy are search-based al-
gorithms. They work by searching for the best approximation for the current
value of k in the table T [ ]. The table T [ ] contains max2 ×max3 ×max5 en-
tries. In each iteration, Greedy chooses the best approximation for the current
value of k in the table from [0, 0, 0] to [max2,max3,max5]. The search space
remains the same for each iteration. Algorithm mGreedy substitutes the values
of max2,max3,max5 in each iteration by a smaller value and hence the search
space becomes smaller each time. The measure described in the last paragraph
to generate the shorter representations even further restricts the search space by
raising the lower limit of the search space to [c1 ×max2, c2 ×max3, c3 ×max5]
from [0, 0, 0].

Although, the choice max2 = 160,max3 = 103 and max5 = 70 returns very
short representation, the table T [ ] becomes very large. Construction of the table
and table look-up make the conversion slow. But, it is observed that smaller
choices like max2 = 84,max3 = 36,max5 = 16 speed up the conversion process
dramatically and the the length of the representation goes up by 1 or 2 terms.
Therefore, in all practical purposes, smaller values can be used. If the table T [ ]
can be precomputed and stored, the conversion becomes almost instantaneous.

Most of the exponent integers used in scalar multiplication are randomly
generated ones. One can generate a random integer directly in SMBR form to
get rid of the conversion process altogether. Also, in the situation where the
exponent is known beforehand, (like generating elliptic curve digital signature
on a messgae), then the known exponent can be converted into the desired format
offline and stored to be used when required. At least, in such applications, our
scalar multiplication algorithm will perform much better than others.

We investigated on two more types of representations using three bases 2, 3
and 5: (1) SMBR with small anomalies and (2) SMBR with non-trivial digits.

SMBR with Small Anomalies: In this type of representation, the powers of 2,
3 and 5 form monotonic decreasing sequences except for some small deviations in
some terms. Let w1, w2 and w3 be the small permissible anomalies for the binary,
ternary and quinary exponents respectively. Then a multibase representation
Σisi2bi3ti5pi is a step representation with (w1, w2, w3)-anomalies if {bi}, {ti},
and {pi} form monotonic decreasing sequences with a few exceptional terms
for which |bi − bi−1| ≤ w1 or |ti − ti−1| ≤ w2 , |pi − pi−1| ≤ w3 hold. Such
representations can be used for scalar multiplication if the points 2a3b5c for
0 ≤ a ≤ w1, 0 ≤ b ≤ w2, 0 ≤ c ≤ w3 can be precomputed and stored (see [16]).
By choosing wi’s to be as small as 2, it was seen that the length of a MBNS
representation can be made quite shorter (24-25 terms).

SMBR with Non-trivial Digits: So far we have considered representations
Σisi2bi3ti5pi , where si ∈ {1, 0,−1}. Let D = {7, 11, 13, 17, 19, 23, 29, 31, · · ·} be
set of integers relatively prime to 2, 3, and 5. Let Dj be the set of the first j inte-
gers from D. Let us consider the MBNS representation of the type Σisi2bi3ti5pi



Efficient Quintuple Formulas for Elliptic Curves 397

where ±si ∈ Dj . Such representations are also very short and can be used for
scalar multiplication if the points sP for s ∈ Dj can be precomputed (see [16]).

3 Efficient Formulas to Compute 5P

In this section we present two new quintupling formulas for elliptic curve points,
one for curves over prime fields of large characteristic and the other for curves
over fields of characteristic 2.

3.1 Point Quintupling in Curves over Binary Fields

As the [i]/[m] ratio is known to be quite smaller in binary fields, affine elliptic
curve group arithmetic is preferable. Hence we propose the new quintupling
formula for such curves in affine coordinates. Also, it is routine work to translate
them into other coordinates. Let P (x, y) be a point on an elliptic curve given by
Equation (3) over a binary field. Let the 5-fold of P be given by, 5P = (x5, y5).
x5 and y5 can be computed as follows:

Let us define the following polynomials: A = x4+x3+b, B = x2(A+x3), C =
A3 +Bx3, D = A2(A2 +B) Then,

x5 = x+
xBD

C2

y5 = y + x5 +
xAD2

C3
+ (x2 + y)

BD

C2
. (4)

Given P (x, y), let us check how much computation is required to compute 5P us-
ing the above formula. In Table 3 we list the subexpressions (and costs) required
to compute x5 and y5. Let us consider the efficiency of the proposed formula.
As this is the first point quintupling formula for curves over binary fields, we do
not have any previous formula to compare performance. We can compute 5P as
2(2P ) + P . Using the generic ADD and DBL, it will cost 3 inversions. We can
reduce one inversion by using composite formula double-and-add (DA) (see [7]).
Using DA, computing 5P costs 2[i] + 11[m]. If we compute 2P first and apply
triple-and-add (TA)(see [7]) to P and 2P , (3 × P + 2P ), then the cost would

Table 3. Cost of the quintupling formula for curves over binary fields

Expression Cost Expression Cost

A (2[s] + 1[m]) B (1[m])
C (1[s] + 2[m]) D (1[m])

1/C (1[i]) 1/C2 1[s]
BD
C2 (2[m]) x5 (1[m])

1/C3 (1[m]) xAD2

C3 (3[m] + 1[s])
y5 (1[m])

Total: 1[i] + 5[s] + 13[m]
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again involve 3 inversions, as TA requires 2 inversions. Using the repeated dou-
bling formula proposed in [11] and ADD, it costs 2[i] + 8[m]. So, the proposed
formula is more efficient than all these methods if [i]/[m] ratio is 5 or more. In
the next section, we provide the proof of correctness of the point quintupling
explicit formula.

3.2 Proof of Quintupling in Curves over Binary Fields

For nonsupersingular curves over fields of characteristic 2, the division polyno-
mials are given by

ψ1 = 1
ψ2 = x

ψ3 = x4 + x3 + a6

ψ4 = x6 + a6x
2 (= x2(x4 + a6)). (5)

The higher degree division polynomials can be obtained by applying the the
following recurrence relations:

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1

ψ2ψ2n = ψn+2ψnψ
2
n−1 − ψn−2ψnψ

2
n+1. (6)

Using first of these recurrences with n = 2 and second one with n = 3, we get,

ψ5 = ψ4ψ
3
2 − ψ1ψ

3
3

= ψ4x
3 − ψ3

3

ψ6 = (ψ5ψ3ψ2
2 − ψ1ψ3ψ

2
4)/ψ2 (7)

= (ψ5ψ3x2 − ψ3ψ
2
4)/x.

Using the above division polynomials, we can derive the expressions for 5-fold
of a point P (x, y) on the curve using the following relation with n = 5:

[n]P = (x+
ψn+1ψn−1

ψ2
n

, y + ψ2on+
ψ2

n+1ψn−2

ψ2ψ3
n

+ h4
ψn+1ψn−1

ψ2ψ2
n

)

where,

ψ2on = x+
ψn+1ψn−1

ψ2
n

and
h4 = (x2 + y).

If the point 5P has the coordinates (x5, y5), then it is an simple exercise to see
that

x5 = x+
ψ6ψ4
ψ2
5

y5 = y + x5 +
ψ6ψ

′
6ψ3

ψ3
5

+ (x2 + y)(
ψ′
6ψ4
ψ2
5

) (8)
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where, ψ
′

6 = ψ6/x. If we define polynomials as

A = x4 + x3 + b

B = x2(A+ x3)
C = A3 +Bx3 (9)
D = A2(A2 +B)

then as can be checked, one has, ψ3 = A, ψ4 = B, ψ5 = C and ψ6 = xD. Sub-
stituting these values in the Equations (8), we get the quintupling formula (4).

3.3 Point Quintupling in Curves over Large Prime Fields

In this section we present the point quintupling formula for elliptic curves over
large prime fields. Proof of the formula for this case is very similar to the proof
presented in Section 3.2. Hence we omit the proof in order to save space.

Let P (X : Y : Z) be a point on the elliptic curve (2) over a prime field. Let
5P have coordinates (X5 : Y5 : Z5). Then X5, Y5 and Z5 can be computed as
follows:

X5 = XV 2 − 2Y UW, (10)
Y5 = Y (E3(12V L2 − V 2 − 16L4)− 64TL5),
Z5 = ZV,

where, T = 8Y 4 (2[s]), M = 3X2 + aZ4 (3[s] + 1[m]), E = 12XY 2−M2 (1[s] +
1[m]), L = ME − T (1[m]), U = 4Y L (1[m]), V = 4TL − E3 (1[s] + 2[m]),
N = V − 4L2 (1[s]), W = EN (1[m]).

The quantities in the parentheses are the cost of computing the corresponding
subexpressions. Besides, computing X5, Y5 and Z5 from these subexpressions
require 1[s] + 3[m], 4[m] + 1[s] and 1[m]. Hence, the cost of computing 5P by
these formulas are 8[s] + 13[m] ≈ 19.4[m] (if Z = 1) or 10[s] + 15[m] ≈ 23[m] (if
Z �= 1).

This is the first explicit formula in literature to compute the multiplication-
by-5 mapping for generic curves over arbitrary finite fields of characteristic > 3.
Hence, we have no other formula to compare efficiency. Let us check the its
efficiency vis-a-vis methods for computing 5P . We can compute 5P by 2(2P )+P
or by 3P +2P . We can compute 5P by 2(2P )+P with 9[s]+17[m] ≈ 24.2[m] (if
P is in affine) or 14[s]+20[m] ≈ 31.2[m] (if P is in Jacobian). Using the formula
2P + 3P , we can compute 5P with 22[m] + 12[s] ≈ 31.6[m] or 26[m] + 16[s] ≈
38.8[m] according as P is in affine or in Jacobian coordinates.

We will refer to the formula computing 5P as QPL. If a = −3, then M =
3X2+aZ4 can be computed as 3(X+Z2)(X−Z2) with a cost of 1[s]+1[m] saving
2[s]. Hence like DBL and TPL, QPL is also cheaper over special curves with
a = −3. Also, just as in case of (u-)DBL and (v-)TPL, an algorithm w−QPL to
compute 5wP can be designed which will be cheaper than w invocations of QPL.
That is because for every invocation of QPL, one has to compute Zi = Vi−1Zi−1

and then compute aZ4
i = aV 4

i−1Z
4
i−1. This step should normally take 1[m]+2[s].
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Table 4. Cost of the quintupling formulas for various types of elliptic curves

Curve Condition Cost

y2 = x3 + ax + b general 10[s] + 15[m]
over a = −3 8[s] + 15[m]

K = Fp after a QPL 9[s] + 15[m]

y2 = x3 + ax2 + b
over K = F2m general 1[i] + 5[s] + 13[m]

But as aZ4
i−1 and V 2

i−1 are already computed in the last QPL operation, by
saving these subexpressions, one can compute aZ4

i = aV 4
i−1Z

4
i−1 by just one [m]

and one [s], saving one [s]. We have summarized the cost of QPL in Table 4.

4 The Scalar Multiplication Algorithms

The scalar multiplication algorithms used in this work are generalizations to 3
bases of the algorithms used in [12]. Without going into routine details, we add
that the computation can be immunized against side-channel attacks using stan-
dard techniques proposed in the literature. Algorithm 2 for curves over binary
fields uses the group operations like ADD, DBL, w-DBL, DA (double-and-add),
TA (triple-and-add) for efficient computation.

Algorithm 2. Scalar Multiplication for Curves over Fields of Even
Characteristic
Input: An integer k =

∑m
i=1 si 2bi3ti5pi , with si ∈ {−1, 1}, and such that b1 ≥ b2 ≥

. . . ≥ bm ≥ 0, t1 ≥ t2 ≥ . . . ≥ tm ≥ 0 and p1 ≥ p2 ≥ . . . ≥ pm ≥ 0 and a point
P ∈ E(Fq)

Output: the point kP ∈ E(Fq)
1: Z ← s1P
2: for i = 1, . . . , m − 1 do
3: u ← bi − bi+1

4: v ← ti − ti+1

5: x ← pi − pi+1

6: if u = 0 then
7: Z ← (5xZ)
8: if v 	= 0 then
9: Z ← 3(3v−1Z) + si+1P //(TA used here)

10: else
11: Z ← Z + si+1P
12: else
13: Z ← 5xZ
14: Z ← 3vZ
15: Z ← 2u−1Z
16: Z ← 2Z + si+1P //(DA used here)
17: Return Z



Efficient Quintuple Formulas for Elliptic Curves 401

In Algorithm 2 we describe the proposed scalar multiplication method to be
used in conjunction with multibase representation for curves over binary fields.
Note that Algorithm 2 requires b1 doublings, t1 triplings and p1 quintuplings.
The number of additions is precisely the number of terms in the expansion of k in
which both the binary and ternary exponents are zero. Otherwise, the addition is
always carried out by invoking a composite operation like double-and-add (DA)
or triple-and-add (TA). Thus we need very few additions for the computations.

We do not present the algorithm for scalar multiplication for curves over prime
fields here. It is a generalization of the algorithm presented in [12] to the case of
3 bases.

5 Scalar Multiplication Results

A theoretical analysis of double (or higher) base number system is still eluding the
researchers. We are also unable to provide theoretical proofs of efficiency of our
scalar multiplication algorithms. We will present their average performance seen
in applying them to a huge number (103 to 106) of randomly generated scalars.

We randomly generated 1 million 160-bit integers and stored them in a file.
All the experiments were conducted by retrieving integers from this file, so that
the same integers were used for all the experiments. This minimizes the bias
in estimates due the use of different sets of integers for different scenarios. We
present the results of our experiments in this section.

We present the experimental results in the Tables 5, 6, 7 below. In these
tables, (i) max2, max3, max5: stand for maximum powers for 2, 3 and 5 allowed

Table 5. Costs of elliptic curves Scalar Multiplication for 160-bit multipliers. The
values of c1, c2, c3 have been chosen as 0.4, 0.3 and 0.25 respectively.

max2 max3 max5 alen Fp-Cost F2m -Cost

160 103 69 30.35 1646.89[m] 96.67[i]+ 693.7[m]
100 85 45 31.56 1669.09[m] 101.6[i]+731.5[m]
90 75 35 32.52 1678.73[m] 108.8[i]+704.2[m]
85 60 25 32.78 1681.04[m] 112.6[i]+691.1[m]
85 38 18 31.44 1645.43[m] 113.0[i]+677.2[m]

Table 6. Costs of elliptic curves Scalar Multiplication for 160-bit multipliers. The
values of c1, c2, c3 have been chosen as 0.4, 0.3 and 0.25 respectively.

max2 max3 max5 w1 w2 w3 #Points alen Fp-Cost F2m -Cost

84 36 16 1 0 0 1 31.01 1649.5[m] 97.7[i] + 676.5[m]
84 36 16 0 0 1 1 29.4 1606.4[m] 90.7[i] + 681.3[m]
84 36 16 1 0 1 3 28.2 1590.2[m] 88.8[i] + 681.8[m]
84 36 16 1 1 0 3 28.5 1597.1[m] 87.5[i] + 681.3[m]
84 36 16 0 1 1 3 25.9 1566.4[m] 85.5[i] + 680.3[m]
84 36 16 1 1 1 7 24.4 1552.3[m] 83.8[i] + 680.4[m]
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Table 7. Costs scalar multiplication for 160-bit multipliers represented in three bases
with larger digits. The values of c1, c2, c3 have been chosen as 0.3, 0.3 and 0.25 re-
spectively. Column # Points indicates the number of points to be precomputed and
stored.

max2 max3 max5 #Points alen Fp-Cost F2m -Cost

84 36 16 1 25.67 1569.23[m] 87.3[i] + 672.07[m]
84 36 16 2 24.5 1534.13[m] 83.18[i] + 666.26[m]
84 36 16 3 22.86 1514.77[m] 81.17[i] + 662.75[m]
84 36 16 4 21.76 1496.29[m] 79.25[i] + 661.34[m]
84 36 16 5 21.14 1486.37[m] 77.98[i] + 660.74[m]

to occur in SMBR expansions, (ii) alen: means the average length of the SMBR
expansions found. (iii) cost: means average cost of scalar multiplication for the
randomly generated integers.

It is observed that choosing smaller values for max2, max3, max5 does not
affect the cost drastically. Hence we recommend smaller values like (85, 40, 20)
to be used instead of (160, 103, 70).

5.1 Scalar Multiplication Without Precomputation

Let us first consider the cost of scalar multiplication using 3 bases without
any precomputation. We conducted several experiments using various values
of max2, max3 and max5 and also various values of c1, c2 and c3. In Table 5,
we have presented some of the results. Observe that for both kinds of curves,
the best results were obtained when the highest possible powers of max2, max3
and max5, i.e. 160, 103 and 70, were chosen. However for these values the con-
version from binary to MBNS is the slowest as the search space for the greedy
algorithm is very big. Also, it was found that the maximum powers of 2, 3 and
5 observed in these expansions were much smaller. So, we choose smaller values
for max2, max3 and max5 and observed that in these cases not only is the
conversion very fast, but also the results are also quite competitive.

5.2 Scalar Multiplication with Precomputations

We conducted a huge number of experiments for scalar multiplication in 3-base
expansion using precomputations. As mentioned earlier, we considered two kinds
of precomputations: (1) SMBR with small anomalies and (2) MBNS with non-
trivial digits. In former case, we choose w1, w2, w3 to be 0 or 1, requiring storage
of 1 to 7 precomputed points. The representations obtained in this case are very
sparse (24.4 terms with a storage of 7 points). Some typical results have been
presented in Table 6.

Also, we conducted experiments using SMBR representations with non-trivial
larger coefficients. We allowed the SMBR to use various digit sets, starting from
D1 = {7} to D8 = {7, 11, 13, 17, 19, 23, 29, 31}. Use of Di requires storage of i
points. It was found that the representations are even sparser than SMBR with
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anomalies. For example, with storage of 7 points, the multibase representation of
a 160 bit integer could be 19.87 terms on average. Also, the computation scalar
multiplication is quite cheaper than previous cases. Some typical results have
been presented in Table 7.

5.3 Comparison

Let us compare the performance of the proposed scalar multiplication scheme to
some of the schemes existing in the literature. Some of the most recent scalar mul-
tiplication algorithms for general curves have been proposed in [7,12,16,17,23].

In [23], the authors have proposed an efficient scalar multiplication algorithm
based on Montgomery’s ladder. Their scheme does not require any precompu-
tation and is secure against side-channel attacks. In [7], several formulas for
efficient arithmetic have been proposed and a novel representation of the scalar
in powers of 2 and 3 has been proposed, which is used for scalar multiplication.
We refer to this scheme as binary/ternary scheme. In [12], the authors have
proposed two schemes based on double base number systems and have obtained
very good results. [16] has extended that work by considering the use of DBNS
with precomputations. The authors have computed efficiency of their scheme
and compared with several schemes with scalars of 200, 300, ... bits. In [17] the
authors have proposed a new point tripling formula based on decomposition to
2 isogenies. They have pointed out efficiency of scalar multiplication schemes.
We will compare our schemes with the methods proposed in these works.

Although our scheme in the current form is not secure against side-channel
attacks [26,27], side-channel resistance can be attained by some routine work.
For example, attacks like simple power analysis attacks can be resisted by using
some schemes like side-channel atomicity proposed in [6] which has almost no
performance penalty. Also, attacks similar to differential power attacks can be
resisted using curve randomization [24] or point randomization [10] countermea-
sures, which have a fixed cost (less than 50[m]).

Let us first consider the scalar multiplication schemes for curves over prime
fields without precomputation. Let the size of the elliptic curve group be of
2160-order. For such scenario, the scheme proposed in [23] requires 2638[m] to
compute the scalar multiplication. The best scheme proposed in [12] requires
1863[m] using double base number system. Of the several schemes proposed
in [17] using the efficient tripling formula proposed in same work, the best scheme
for this scenario is sextuple and add method. This method requires 1957[m] for
the special curves used by them and almost the same amount of computation
for arbitrary curves. Our best scheme (max2 = 160, max3 = 103, max5 =
70) (see Table 5), takes only 1646[m] on average. Even for smaller values of
max2, max3, max5, our schemes are clear winners.

If the system admits precomputation and storage of a few points, then we
can resort to the two methods using SMBR with small anomalies or SMBR with
non-trivial digit sets. In [17], the best performance reported for this scenario
is 1623[m] with 8 points of storage with 3 −NAF3 method. As can be checked
from Tables 6 and 7 the methods proposed in this work invariably perform better
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Table 8. Average number of field operations using the binary, NAF, ternary/binary
and DB-chain approaches for n = 160 bits, and [i]/[m] = 8

Algorithm [i]/[m] = 8 Algorithm [i]/[m] = 8
[i] [m] ≈ [m] [i] [m] ≈ [m]

binary 240 480 2400 ternary/binary 129 787 1819
NAF 213 426 2130 DB-chain 114 789 1701
3-NAF 200 400 2000 This work1 97 693 1469
4-NAF 192 384 1920 This work2 113 677 1581

even with less storage.The best method proposed in [16] for 200 bit scalars is
the DBChain method with 8 non-trivial coefficients (S8-DBChain). To compare
our scheme with their method, we experimented with 200 bit scalars. With
max2 = 105, max3 = 60, max5 = 35 and c1 = 0.4, c2 = 0.3, c3 = 0.25, length
of SMBR was seen to be 23.58, while length of the DBNS representation was
reported to be 25.9. Also, for 200 bit scalars, SMBR based scalar multiplication
took 1909.12[m] computation on average in comparison to 2019[m] reported
in [16].

For curves over binary fields, the proposed schemes perform even better. We
summarize the comparisons in Table 8. In the table, binary and NAF refer to
the traditional Binary and NAF based double-and-add algorithms. The DB-chain
method refers to the one proposed in [12] and binary/ternary refers to a method
proposed in [7]. The last column of the table is approximate cost obtained by the
number of inversion to the [i]/[m]-ratio and adding the number of multiplication
to it. The method proposed in this work outperforms every known scheme even
without any precomputations or storage for precomputed points. The scheme
can be further improved using precomputations (see Tables 5 and 6).

6 Conclusion

In this work we have presented two efficient formulas for point quintupling in
ECC over binary and prime fields. Also, we have proposed two scalar multiplica-
tion algorithms to take advantage of the proposed formulas. These algorithms use
a multibase representation of the scalar using 2, 3 and 5 as bases. Also, we have
dealt with the situation where the system admits precomputation and storage of
some precomputed points. Our empirical results indicate that all the proposed
schemes, with or without precomputation, outperform the corresponding best
scalar multiplication schemes previously known.
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Enforcing Confidentiality in Relational Databases
by Reducing Inference Control to Access Control
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Abstract. Security in relational database systems pursues two conflict-
ing interests: confidentiality and availability. In order to effect a compro-
mise between these interests, two techniques have evolved. On the one
hand, controlled query evaluation always preserves confidentiality, but
leads to undecidable inference problems in general. On the other hand,
access control features simple access decisions, but possibly cannot avoid
unwanted information flows. This paper introduces a form of access con-
trol that, in combination with restricting the query language, results in
an efficient access control mechanism under preservation of confidential-
ity. Moreover, we justify the necessity of our restrictions and give an
outlook on how to use our result as building block for a less restrictive
but still secure system.

Keywords: Access control, confidentiality, database security, inference
control, information flow, policy, potential secrets, relational databases.

1 Introduction

Information systems are primarily intended for providing structured data to
users. In practice, relational databases are often used to serve this purpose since
they are well understood and appropriate for modelling facts from the real world.
However, besides the availability of data, also confidentiality has to be considered
in order to prevent unwanted disclosure of information. This information does
not need to be represented in the database explicitly. Rather, inferences can
cause such information disclosure as well.

Classical techniques for enforcing database security normally do not cope with
the inference problem. E. g., access control only prevents explicitly represented
secrets from being disclosed. Inference control mechanisms like controlled query
evaluation by Biskup and Bonatti [10] can solve this problem, but unfortunately
these mechanisms are computationally inefficient or even infeasible in general.

As an illustration of the inference problem imagine a fictitious company and
suppose there is an employee called Smith working in the sales department.
Moreover, suppose that employees in the sales department get a salary of $ 2500.
From this “basic” information we can derive that Smith gets a salary of $ 2500,
although we do not know this fact “directly”. Such inferences become crucial

J. Garay et al. (Eds.): ISC 2007, LNCS 4779, pp. 407–422, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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when the “basic” information is public but the inferred information shall be kept
confidential.

In this paper we introduce the policy based classification of databases. In
combination with restricting the query language, this technique preserves con-
fidential information on the one hand and is computationally efficient on the
other hand. The need of restricting the expressiveness of the query language is
indeed a drawback of our mechanism, but relaxing these restrictions possibly
leads to a lack of confidentiality. This is an indication for inference control being
substantially different from access control on a semantic level.

Indeed, restricting the query language is not acceptable from the perspective
of a database user. Therefore we shall use our basic results in order to develop
a secure model allowing the full relational calculus (or at least a significant
fragment) as query language. A thorough formal investigation of this issue is out
of the scope of this paper but we will give an outlook on future work.

The remainder of this paper is structured as follows. Section 2 gives an
overview over literature about database security in general and the problem
of inference in particular; furthermore, we roughly bring our contribution in line
with the related work. Section 3 recalls the basics of the relational data model
and gives some auxiliary definitions in the context of secure query evaluation.
In Sect. 4, we introduce the policy based classification of databases, propose two
algorithms for enforcing it, and prove its security. Moreover, we give a critical
review of our method, including the problem of expressiveness, and outline some
perspectives for future research. In Sect. 5, we conclude our work.

2 Related Work

A general overview over the inference problem in different contexts can be found
in the work of Farkas and Jajodia [19]. Fernández-Medina and Piattini [20] as
well as Bertino and Sandhu [4] state and analyze requirements in the field of
database security.

Access control is investigated by many authors. The main concepts and nu-
merous extensions can be found in popular textbooks on computer security, e. g.
[5,18,21]. Discretionary access control (DAC) as well as mandatory access control
(MAC) operates on the actual data, and classification information is (at least
conceptually) directly attached to this data, or its containers, respectively.

The general problem with discretionary access control is that the responsibility
of correctly assigning access rights is with the owner of an object. In the case
of relational databases the security administrator has to set appropriate access
rights in order to prevent information disclosure by inference.

The mandatory approach employs system-wide policies on classified data ac-
cording to a security model. General overviews on security models are given by
McLean [24,25] and Sandhu [30]. The most known security model is the Bell-
LaPadula model [3]. Roughly, in this model every user is assigned a clearance
from a lattice of security levels and will only be allowed to read an object if the
classification of this object is dominated by the clearance of the user. Moreover,
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the user will only be allowed to write an object if his clearance is dominated by
the classification of the object. This approach, although critically discussed e. g.
by McLean et al. [23] and by Nicomette and Deswarte [26], is able to prevent
unwanted information flows caused by sequences of read and write operations.

Early work on mandatory access control in the context of relational databases
was done by Lunt et al. [22] by proposing a formal security model. Among many
other topics, subsequent work studies how to consistently declare the classifica-
tions of structured objects that are bound to constraints, in order to prevent
unwanted inferences, see e. g. Olivier and von Solms [27], Cuppens and Gabil-
lon [14,15], and Dawson et al. [16,17]. Basically, the classifications of composed
or derivable information should be dominated by the classifications of all the
constituents or presuppositions, respectively.

Examples of further work on confidentiality in databases include the technique
of query rewriting, proposed by Stonebreaker and Wong [32] and recently recon-
sidered by Rizvi et al. [28], and the Disclosure Monitor of Brodsky et al. [13].

Controlled query evaluation (CQE) for logical databases has been developed
by Biskup and Bonatti [6,7,8,9,10], based on the work of Sicherman et al. [31] and
Bonatti et al. [12], respectively. Biskup and Bonatti [11] propose CQE variations
for open queries in relational databases. CQE guarantees perfect confidentiality
but is, unfortunately, computationally infeasible in general.

In contrast to most previous work we focus on the information to be protected
according to the security policy rather than on the actual data in the database
instance. Furthermore we state sufficient conditions so that the security admin-
istrator has not to care about harmful inferences, since they cannot occur in our
setting. Since we propose a static mechanism for enforcing security policies we
are also able to state efficient algorithms.

Further information about relational query languages and their computational
complexity can be obtained e. g. from [1].

3 Preliminaries

We begin with some definitions concerning relational databases. Afterwards, a
framework for preserving confidentiality in relational databases is introduced.

3.1 Relational Databases

Definition 1 (Relation schemas and instances). A relation schema RS =
〈R,U , Σ〉 consists of a relation symbol R, a finite set of attributes U = {A1, . . . ,
An}, and a finite set of semantic constraints Σ. Const denotes an infinite set
of constants. An instance r of a relation schema is a finite Herbrand interpre-
tation1 of the schema, considering the relation symbol as a predicate. A tuple is
denoted by μ = R(a1, . . . , an) where ai ∈ Const . If a formula φ of an appropriate
language is true in r, we write r |=M φ.
1 An Herbrand interpretation I interprets constants by themselves, I(c) = c for every

c ∈ Const . I is called finite if every predicate symbol is interpreted by a finite set.
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Remark. On the database level we identify an instance r with the set of tuples
μ such that r makes μ true. If r |=M μ we shortly say “μ is in r”.

Definition 2 (Functional dependencies). Let A,B ⊆ U be sets of attributes.
An instance r satisfies the functional dependency (fd) A → B iff any two tuples
in r agreeing on the values of the attributes of A also agree on the values of the
attributes of B. A → B is called trivial if B ⊆ A.

In the following, we assume a database consisting of exactly one relation schema
RS = 〈R,U , Σ〉 with Σ containing only functional dependencies. The schema of
the database is then determined by RS and Const . Furthermore, let the domain
of every Ai ∈ U be Const .

Logic related terms and concepts are to be seen under the restrictions of
Definition 1. As a result, arguing about the set of all interpretations (as in the
usual definition of the |=-operator) in fact means arguing about the set of all finite
Herbrand interpretations. Moreover, different constants are always interpreted
differently by the Herbrand interpretation, becoming important when arguing
about inconsistency. Finally we apply the closed world assumption, saying that
for any database instance r and any tuple μ, if μ is not explicitly represented
in r we assume that μ is false in r. We will use this notion in a wider sense,
considering not only tuples but arbitrary suitable formulas.2

Note that the “single relation restriction” only serves as a simplification of our
investigations and could easily be abolished, whereas the “functional dependen-
cies only restriction” is substantial. Since we do not consider multilevel security,
there is the same confidentiality policy for every user. Therefore, we are able to
model the users of our system as a single user.

In order to retrieve information from the database, a user expresses queries
in an appropriate language. In Definition 3, we define a simple fragment of the
relational calculus, enabling the user to express closed variable-free queries with-
out sentential connectives. The common procedure of evaluating closed queries
w. r. t. a database instance is recalled in Definition 4.

Definition 3 (Query language). The query language Lq is defined by

Lq := {R(a1, . . . , an) | ai ∈ Const} .

Definition 4 (Ordinary query evaluation). The ordinary query evaluation
eval maps a query Φ ∈ Lq on a truth value, dependent on the database instance r:

eval (Φ)(r) := r |=M Φ.

An alternative version eval∗ maps Φ on Φ or ¬Φ, respectively:

eval∗(Φ)(r) := if r |=M Φ then Φ else ¬Φ.

2 Biskup and Bonatti [11] call the interpretations characterized by the properties of
Definition 1 DB-interpretations and consider a particular DB-implication |=DB .
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3.2 Secure Evaluation of Queries

A confidentiality policy describes which information a user should not know.
Potential secrets, as defined below, form a special kind of confidentiality policies,
consisting of formulas a user should not know in case they are true in the actual
database instance. We use a fragment of the positive existential calculus without
free variables to define potential secrets:

Definition 5 (Potential secrets). Let Var be an infinite set of variables. The
language of potential secrets Lps is defined by

Lps := { (∃X1)(∃X2) . . . (∃Xl)R(v1, . . . , vn) | 0 ≤ l ≤ n,

Xi ∈ Var , vi ∈ Var ∪ Const , {X1, . . . , Xl} ⊆ {v1, . . . , vn} ,
vi ∈ Var =⇒ vi = Xj for some j ∈ {1, . . . , l} ,
vi, vj ∈ Var =⇒ vi �= vj } .

Remark. Note that Lq is a subset of Lps. Therefore, the language of all queries
and all potential secrets can be denoted by Lps for short. Sets of potential secrets
are usually denoted by pot sec.

Example 1. Consider the schema RS1 = 〈R1, {A,B,C} , {A→ BC}〉 and the
instance r1 = {μ1, μ2, μ3} with μ1 = R1(a1, b1, c1), μ2 = R1(a2, b1, c2), and μ3 =
R1(a3, b1, c1). Moreover, let pot sec1 = {Ψ1, Ψ2} with Ψ1 = (∃X1)R1(X1, b1, c1)
and Ψ2 = R1(a2, b2, c2). Ψ1 shall prevent the user from discovering the combi-
nation (B = b1, C = c1). An appropriate enforcement of this policy must keep
μ1, μ3 secret, and even the critical parts of these tuples, as well as any further
information disclosing the occurrence of (B = b1, C = c1) in r1. Ψ2 is false in r1
and therefore does not need not to be protected.

Although being designed for the control of a single user originally, we can extend
the notion of potential secrets to lattice-based mandatory security models [30] as
well. By labeling every potential secret Ψi with a classification ci, we get a policy
pot sec∗ = {(Ψ1, c1), (Ψ2, c2), . . . , (Ψm, cm)}. A user u is assigned a clearance
clu, meaning that u is only allowed to read information classified at most as
high as clu. In return, u must not read information classified higher than or
incomparable with clu. As a result, for u we obtain a “personal confidentiality
policy” pot secu = {Ψi | (Ψi, ci) ∈ pot sec and ci �≤ clu}.

Biskup and Bonatti developed the technique of controlled query evaluation
(CQE), modifying the ordinary query evaluation by distorting answers if nec-
essary to preserve confidentiality w. r. t. a given confidentiality policy (see [10]
for an overview). We adopt their notion of security and apply it to the modified
query evaluation, a generalized version of CQE.

Definition 6 (Modified query evaluation). A modified query evaluation
m eval maps a query sequence Q = 〈Φ1, Φ2, . . .〉, a database instance r and a
confidentiality policy pot sec on an answer sequence:

m eval(Q)(r, pot sec) = 〈ans1, ans2, . . .〉 .
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Definition 7 (Secure query evaluation). Consider a (possibly infinite) query
sequence Q = 〈Φ1, Φ2, . . .〉 with Φi ∈ Lq and a confidentiality policy pot sec =
{Ψ1, . . . , Ψm} with Ψi ∈ Lps. The modified query evaluation m eval is secure
w. r. t. pot sec if for every finite prefix Q′ of Q, for every Ψ ∈ pot sec, and for
every instance r1 of RS there exists an instance r2 of RS satisfying the following
properties:

1. m eval(Q′)(r1, pot sec) = m eval (Q′)(r2, pot sec);
2. eval∗(Ψ)(r2) = ¬Ψ ;

m eval is called secure if it is secure w. r. t. every pot sec.

Remark. Note that the first property in this definition demands the same an-
swers of r1 and r2 under a fixed pot sec. Consequently, this notion of security
even allows the user to know the confidentiality policy.

4 Policy Based Classification of Databases

In this section we introduce our method of appropriately classifying relational
databases to enforce efficient access control and guaranteeing the security prop-
erty in the sense of Definition 7 at the same time. To appropriately represent
a confidentiality policy in the context of relational databases we develop the
concept of classification instances. For simplicity, we do not assume several clas-
sification levels but regard information as being secret or not.

4.1 Classified Databases

Formally, the classification of a database is an instance of a classification schema
which is obtained from the schema of the database to be classified.

Definition 8 (Classification schemas). The classification schema of the re-
lation schema RS = 〈R,U , Σ〉 is defined by RSC = 〈S,U , ∅〉 and ConstC =
Const ∪ {#} with # /∈ Const , where S denotes a new relation symbol.

Definition 9 (Classification instances). Let pot sec be a set of potential
secrets. The classification instance s w. r. t. pot sec is defined as follows: For
every Ψ = (∃X1) . . . (∃Xl)R(v1, . . . , vn) with Ψ ∈ pot sec, a (generalized) tu-
ple S(v∗1 , . . . , v∗n) is inserted into s where v∗i = vi if vi ∈ Const and v∗i = #
otherwise. There are no further formulas in s.

Example 2. Recall the set pot sec from Example 1. The corresponding classifi-
cation instance is s = {μ∗

1, μ
∗
2} with μ∗

1 = S(#, b1, c1) and μ∗
2 = S(a2, b2, c2).

With the classification instance a query can be determined as allowed or not
allowed. Intuitively, a tuple in the classification instance represents a value com-
bination to be kept secret. The symbol # denotes a placeholder, similar to a null
value: the value is existing but irrelevant from the perspective of confidentiality.
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If the constants in a query match with the constants of a tuple in the classifi-
cation instance, this query asks for a secret and must therefore not be allowed.
Note that even a partial matching may be sufficient to disallow a query: if all
constants of the tuple (except #) occur in the query the answer must be refused,
regardless of the other constants in the query. Thus, to formally define allowed
queries, we have to introduce the notion of relevance at first.

Definition 10 (Relevance). Let χ1, χ2 ∈ Lps. χi(A) denotes the value of at-
tribute A in χi. χ1 is called relevant for χ2 iff for every A ∈ U it holds that
χ1(A) ∈ Const =⇒ χ1(A) = χ2(A).

Definition 11 (Allowed queries). A query Φ = R(v1, . . . , vn) against an in-
stance r is allowed w. r. t. a set of potential secrets pot sec if in the classification
instance s (w. r. t. pot sec) there does not exist a tuple μ∗ being relevant for Φ.

The access control function defined below is a modified query evaluation in the
sense of Definition 6.

Definition 12 (Access control). Let r be an instance of RS, s the classifi-
cation instance w. r. t. pot sec, and Q = 〈Φ1, Φ2, . . .〉 a (possibly infinite) query
sequence with Φi ∈ Lq. The access control function ac is defined by

ac(Q)(r, pot sec) := 〈ans1, ans2, . . .〉

with

ans i :=
{

eval∗(Φi)(r) if Φi is allowed w. r. t. pot sec,
mum otherwise.

Note that the access control decision is instance independent. Consequently, anal-
ogous to CQE with refusal [7], ac has to protect every Ψ ∈ pot sec, regardless
of Ψ being true in r or not.

Example 3. Again, recall Example 1 and the classification instance s from Ex-
ample 2. We examine the query sequence Q1 = 〈Φ1,1, Φ1,2, Φ1,3〉 with Φ1,1 =
R1(a4, b1, c1), Φ1,2 = R1(a2, b1, c2), and Φ1,3 = R1(a2, b2, c2). It is easy to see
that Φ1,1 and Φ1,3 are not allowed according to Definition 11: Although Φ1,1 is
false in r1, it contains a critical part, namely the combination (B = b1, C = c1);
consequently, with μ∗

1 there exists a tuple in s violating the condition of Defini-
tion 11. Φ1,3 is true in r1 and to be kept secret because of μ∗

2. Finally, Φ1,2 is
true in r1 and furthermore allowed w. r. t. pot sec1. Thus, the answer sequence
to Q1 is 〈mum, R1(a2, b1, c2), mum〉.

4.2 Efficient Enforcement

Unlike inference control in general, for a single query our access control mecha-
nism can be enforced efficiently. In the following we constructively show this by
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sketching two algorithms. Considering the number n of attributes of the under-
lying database as a constant, the first algorithm has linear runtime w. r. t. the
size m of the confidentiality policy, whereas the second algorithm enforces our
mechanism even in logarithmic time. Since the ordinary query evaluation has to
be carried out in either case, we do not consider its runtime but concentrate on
the runtime of the access control mechanism.

Consider a query Φ ∈ Lq, a database instance r of RS, a confidentiality policy
pot sec, and a corresponding classification instance s. Moreover, let n denote the
number of attributes in RS (considered constant), m = |pot sec|, and |r| the
number of tuples made true by r.

Algorithm A (Linear Time): For every μ∗ in s check, whether every attribute
not instantiated by # in μ∗ has the same value in the query Φ. If so, refuse the
answer; otherwise, return eval∗(Φ)(r).

Since s contains as many formulas as pot sec, the access control in Algorithm
A has a linear runtime of O(n ·m).

Algorithm B (Logarithmic Time): Suppose, the tuples in s are indexed by a
B-tree T (see [2]). Construct the set PΦ of formulas being relevant for Φ by
successively replacing every subset of values in Φ with the special value #, e. g.,
if Φ = R(a, b), then PΦ = {R(a, b), R(#, b), R(a,#), R(#,#)}. For every ρ ∈ PΦ,
check if ρ is in s by searching T . If any ρ occurs in T , refuse the answer; otherwise,
return eval∗(Φ)(r).

Note that |PΦ| = 2n. Furthermore, the height h of T (and thereby the worst-
case search time) is bounded by h ≤ 2+ logk+1

(
m
2k

)
where the number of entries

in each node of T lies between k and 2k (cf. [2]). Since k is an implementation-
dependent constant, h can be estimated by O(log(m)). Consequently, the access
control in Algorithm B has a logarithmic runtime of O(2n · log(m)).

Provided that the tuples in r are also appropriately indexed by a B-tree, the
ordinary query evaluation takes time O(log(|r|)). We sum up our results in the
following proposition.

Proposition 1 (Efficient computability of ac). There exists an algorithm
for computing the access control function ac(〈Φ〉)(r, pot sec) in time
O(min {n ·m, 2n · log(m)}+ log(|r|)).

4.3 Proof of Security

We now prove the policy based classification of databases secure in the sense of
Definition 7. To this end, we have to do a little preliminary work in form of two
lemmas.

Lemma 1. Let χ and χ1, . . . , χp be in Lps. Then, the following conditions are
equivalent:

1. {χ1, . . . , χp} |= χ.
2. There exists a χi ∈ {χ1, . . . , χp} such that χ is relevant for χi.
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Sketch of Proof. The “only if”-case can be shown by contraposition constructing
a witness instance r against condition 1, being a model for {χ1, . . . , χp} but not
for χ. For the “if”-case we simply employ the definition of relevance.

Lemma 2. Let S be a finite, consistent set of formulas and {S1,S2,S3} a par-
tition of S satisfying the following properties:

1. φ ∈ S1 =⇒ φ ∈ Lq.
2. φ ∈ S2 =⇒ φ = ¬φ′ with φ′ ∈ Lq.
3. φ ∈ S3 =⇒ φ is an fd.

Then, considering some Ψ ∈ Lps, the following conditions are equivalent:

1. S |= Ψ .
2. There exists a χ ∈ Lq with χ ∈ S and χ |= Ψ .

Sketch of Proof. We show the “only if”-case by contraposition using a witness
instance r against condition 1. This instance contains exactly the formulas from
S1 and can also be proved to be a model for S2 and S3, leading to r |=M S. By
the assumption of contraposition, S1 �|= Ψ . Using Lemma 1, we then prove Ψ
not being relevant for any φ ∈ S1, yielding r �|=M Ψ . The “if”-case is obviously
satisfied.

Now, we are able to prove the security of our access control method.

Theorem 1 (Policy based classification of databases is secure). Con-
sider the instance r of RS, the confidentiality policy pot sec ⊂ Lps, the (possibly
infinite) query sequence Q = 〈Φ1, Φ2, . . .〉 with Φi ∈ Lq, and the classification
instance s of r w. r. t. pot sec. Let furthermore ac be the access control function
according to Definition 12. Then, ac is secure w. r. t. pot sec in the sense of
Definition 7.

Sketch of Proof. We consider a finite prefix Q′ = 〈Φ1, . . . , Φn〉 of Q, a Ψ ∈
pot sec, and a set log , formed by Σ and the answers to the allowed queries
in Q′. Lemma 2 is used to show that log �|= Ψ . Hence, there exists a witness
instance r′ with r′ |=M log and r′ �|=M Ψ , thereby satisfying the properties of
Definition 7.

The theorem shows the security of our access control w. r. t. a fixed Q, a fixed
pot sec, and a fixed r. However, the proof applies for arbitrary query sequences,
confidentiality policies and database instances, resulting in the (general) security
of the access control.

Corollary 1. The access control function according to Definition 12 is secure
in the sense of Definition 7.

As a result, the restrictions demanded by the policy based classification make
sure that potential inferences (due to functional dependencies) cannot actually
be employed by the user. Regarding the user knowledge is no longer necessary
for a secure query evaluation, enabling us to design a static (and therefore effi-
cient) confidentiality enforcing mechanism. Clearly, there is a trade-off between
efficiency and expressive power of the query language. We address this problem
in the forthcoming subsection.
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4.4 A Critical Review

We developed an access control method, preserving confidentiality in relational
databases and being efficiently computable at the same time. Moreover, the
security of our approach has been shown formally in Theorem 1—as far as we
know, such a theorem has never been established for DAC/MAC. Indeed, we
had to accept several restrictions to make our method work properly. The major
drawback lies in the query language Lq. Compared to the full relational calculus,
it is obviously less expressive.

However, from the perspective of a database user a substantial restriction of
the query language is not reasonable. Thus, we see our contribution as a building
block for a more expressive model and plan to enhance the query language to
the full relational calculus in future work.

In doing so we will adapt the access control mechanism appropriately. Roughly
speaking, we will consider complex queries as views over the base relations of the
database. Following the proposal of Rosenthal et al. [29], we will allow access to
a view if access to all “basic elements” of the view is allowed. More precisely, if a
user is allowed to access the building blocks of a complex query, he should also
be allowed to access the view defined by this query, since he could construct this
view by appropriately composing the building blocks just as well. Moreover, if
at least one of the building blocks must not be accessed by the user, also access
to the view should be rejected as justified by the following example.

Example 4. Consider two simple queries Φ1, Φ2 ∈ Lq and a complex query Φ3 =
Φ1 ∨ Φ2 being false in the database instance. Also suppose that the user must
not learn the truth value of Φ1 in the instance. If Φ3 was allowed the user could
infer the confidential truth value of Φ1 by learning that Φ3 is false.

Considering only closed variable-free queries we conjecture that this approach
works quite straightforward. In the case of (free or bound) variables, things be-
come a bit more complicated. We illustrate these difficulties with two additional
examples.

Example 5. Suppose an alternative query language L ∃
q := Lps. We examine the

schema RS2=〈R2,{A,B,C},{A→ BC}〉 with the instance r2 = {R2(a1, b1, c1)}
and the policy pot sec2={(∃X)R2(X, b1, c1)}. Then, we have the classification
instance s={S(#, b1, c1)}.

Now assume the query sequence Q2 = 〈Φ2,1, Φ2,2〉 defined by Φ2,1 = (∃X)
R2(a1, b1, X) and Φ2,2 = (∃X)R2(a1, X, c1). Both Φ2,1 and Φ2,2 are allowed in the
sense of Definition 11, leading to the answer sequence 〈(∃X)R2(a1, b1, X), (∃X)
R2(a1, X, c1)〉. However, utilizing the fd A→ BC, this information enables the
user to infer R2(a1, b1, c1) being true in r2 and thus to disclose the potential
secret.

As seen in this example, the advantage of our restrictive query language, namely
that functional dependencies cannot be exploited for harmful inferences, gets lost
if we allow the usage of existentially quantified variables. But also in the absence
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EMP pnr name dept salary
001 Jones accounting 2000
002 Jackson sales 2500
003 Stone purchasing 2200
004 Smith sales 950
005 Evans advertising 3200

Fig. 1. Employees table

of functional dependencies confidentiality is possibly violated if admitting the full
relational calculus as query language.

Example 6. Assume a table containing the personnel number, name, depart-
ment, and salary of employees of a company (Fig. 1). Formally, this is an instance
of the schema RS3 = 〈EMP , {pnr, name, dept, salary} , Σ〉 with Σ being a set
of functional dependencies. Furthermore, we want to hide the fact that Smith
works in the sales department, leading to the confidentiality policy

pot sec3 = {(∃X1)(∃X2)EMP (X1, Smith, sales, X2)} .

For the sake of brevity we omit the respective classification instance. A user now
poses the query sequence Q3 = 〈Φ3,1, Φ3,2〉 with

Φ3,1 =(∀X1)(∃X2)(∃X3)(∃X4)(∃X5)
(EMP (X2, Jackson, X1, X3) =⇒ EMP (X4, Smith, X1, X5)),

and

Φ3,2 = (∃X1)(∃X2)EMP (X1, Jackson, sales, X2) .

At the first glance, neither Φ3,1 nor Φ3,2 has to be refused, since there is no
obvious violation of the security policy: the critical combination (name: Smith,
dept: sales) occurs in none of the building blocks of the queries. Nevertheless, if
the systems answers both queries correctly (they are both true in the instance)
the user can infer the secret. That is because the first answer tells him that
in every department with an employee Jackson there also works an employee
called Smith; the second answer then discloses the fact that there is an employee
Jackson in the sales department. Consequently, there must also be an employee
called Smith in the sales department.

When we admit variables in the query language—whether they are bound or
even free—there is no obvious way to reduce access control to the basic parts
of a query, since these parts are—if they actually contain variables—no longer
elements from Lq. A suitable substitution of the variables by constants is neces-
sary to transfer our results to this kind of queries. A detailed investigation will
be subject of future work.
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5 Conclusion

In this paper, we proposed a method for enforcing confidentiality policies in
relational databases. Moreover, we proved our method efficiently computable
and secure under a restricted query language. We pointed out the necessity
of a restriction by showing that more expressive languages might lead to the
disclosure of secrets. Since a substantial restriction of the query language is not
acceptable from the perspective of a database user, we finally roughly sketched
an approach for more complex queries and pointed at the problems occuring
with queries containing variables.

Our results indicate that the goals of (dynamic) inference control can be
enforced by (static) access control only if we are willing to accept some kind of
restriction. Future research should try to determine the minimal restriction being
necessary to ensure confidentiality on the one hand and maximize availability
and expressiveness of the query language on the other hand.

A minor drawback of our method is the fact that a security administrator
has no means to comfortably declare a set of similar secrets. Extending the
confidentiality policy language by free variables could solve this problem.

Finally, the detailed investigation of more complex dependencies and database
modifications in the form of updates and insertions offer possibilities for further
research.
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Appendix: Detailed Proofs

Lemma 1 and Lemma 2

Suppose that dq(χ) denotes the formula emerging from χ ∈ Lps by discarding
the quantifiers. E. g., if χ = (∃X)R(a,X), then dq(χ) = R(a,X).

Proof (Lemma 1). First, we show “ =⇒ ” by contraposition. Assume, for every
χi ∈ {χ1, . . . , χp} it holds that χ is not relevant for χi, leading to

β(dq(χi)) �= β(dq(χ)) (1)

for every variable assignment β. We construct a witness instance r against con-
dition 1 by taking any variable assignment β and setting

r := {β(dq(χ1)), . . . , β(dq(χp))} . (2)

Then, r |=M {χ1, . . . , χp} by (2) and r �|=M χ by (1) and (2).
Second, we show “ ⇐= ”. Let there be a χi that χ is relevant for. By definition

of the existential quantifier, it holds that

(∃X1) . . . (∃Xl)R(v1, . . . , vi−1, vi, vi+1, . . . , vn) |=
(∃X1) . . . (∃Xl)(∃Xl+1)R(v1, . . . , vi−1, Xl+1, vi+1, . . . , vn)

(3)

with R denoting a relation symbol, vi ∈ Const , Xl+1 ∈ Var , and Xl+1 /∈
{X1, . . . , Xl}. Equation (3) in combination with Definition 10 yields χi |= χ
and thus {χ1, . . . , χp} |= χ as well. ��

Proof (Lemma 2). Again, we first show “ =⇒ ” by contraposition and assume
that for every χ ∈ Lq it holds that

χ /∈ S or χ �|= Ψ. (4)

We construct a witness instance r against condition 1, satisfying r |=M S and
r �|=M Ψ . Consider r as the Herbrand interpretation given by

r := S1. (5)

Since S is finite, r can be represented as a finite relation as well. It holds that

r |=M S, (6)

as we show by distinguishing the three kinds of formulas in S:

1. [S1] By the construction of r according to (5) it holds that r |=M S1.
2. [S2] By the consistence of S, there is no formula in S1 whose negative comple-

ment is in S2. Thus, by the construction of r and the closed world assumption,
r |=M S2.
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3. [S3] Let S1 consist of the tuples μ1, . . . , μk. From (5) it follows that r |=M

μ1, r |=M μ2, . . . , r |=M μk. Now assume a φ ∈ S3 with r �|=M φ, mean-
ing that the fd A → B represented by φ is violated in r. As a result, two
tuples μi and μj from S1 agreeing on the A-attributes must differ on the
B-attributes. However, this implies that {μi, μj , φ} is inconsistent and, be-
cause of {μi, μj , φ} ⊆ S, that S is inconsistent as well, contradicting the
precondition that S is a consistent set.

From (4) we know that φ �|= Ψ for every φ ∈ S1. Since S1 is consistent and does
not contain any functional dependencies, there are no further inferences possible,
leading to S1 �|= Ψ . Then, by Lemma 1 and Definition 10, it follows for Ψ that
for every φ ∈ S1 there exists an A ∈ U with Ψ(A) ∈ Const and φ(A) �= Ψ(A).
With (5) this leads to r �|=M Ψ .

Second, we examine the “ ⇐= ” case. Obviously, by χ |= Ψ and χ ∈ S, it holds
that S |= Ψ . Consequently, the proof is complete. ��

Theorem 1

Proof. Consider a finite prefix Q′ = 〈Φ1, . . . , Φn〉 of Q and a potential secret
Ψ from pot sec. We prove the existence of an instance r′ making Σ and the
answers to the allowed queries in Q′ true on the one hand and making Ψ false on
the other hand, thereby being an instance of RS and satisfying the properties
of Definition 7. To this end, we construct an auxiliary set log :

log := Σ ∪ {ans i | i ∈ {1, . . . , n} , ans i �= mum} . (7)

We now show indirectly that log does not imply Ψ after the last query and
therefore assume

log |= Ψ. (8)

By Lemma 2 (with S := log), (8) would require a positive ans i ∈ log , satisfying

ans i |= Ψ. (9)

According to (7) and Definition 12, ansi = eval∗(Φi)(r), and thus, by (9),

eval∗(Φi)(r) |= Ψ. (10)

By Definition 4, eval∗(Φi)(r) ∈ {Φi,¬Φi}, so we actually have to distinguish two
cases in (10). However, by the structure of Φi and Ψ and by the infiniteness of
Const , ¬Φi |= Ψ cannot hold; consequently, (10) reduces to

Φi |= Ψ. (11)

According to Definition 9, s contains a tuple μ such that Ψ is relevant for μ
and every attribute in μ not agreeing with Ψ has the value #. Furthermore, Ψ is
relevant for Φi by (11). This leads to Φi not being allowed w. r. t. pot sec, since μ
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contradicts the condition in Definition 11. As a result, ans i = mum, contradicting
(9) and thereby (8). Consequently,

log �|= Ψ. (12)

Now, we can prove ac secure w. r. t. pot sec: By (12) and the definition of
logical implication, there exists a database instance r′ satisfying

r′ |=M log and r′ �|=M Ψ. (13)

Equation (7) implies log |= ans i for every ansi �= mum, which, in combination
with (13), leads to

r′ |=M ans i for every ans i �= mum. (14)

Since access control in the sense of Definition 12 is instance independent, the
i-th answer of ac only depends on Φi and pot sec. As a result,

ac(Φi)(r, pot sec) = mum iff ac(Φi)(r′, pot sec) = mum. (15)

Access control either returns the correct answer to a query or refuses the answer.
Consequently, (14) and (15) imply the first property of Definition 7, ac(Q′)
(r, pot sec)=ac(Q′)(r′, pot sec). By (13), also the second property, eval∗(Ψ)(r′)
= ¬Ψ , is satisfied. Finally, by (13) and (7) r′ satisfies Σ and is therefore an
instance of RS. ��
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Abstract. A negative database is a privacy-preserving storage system
that allows to efficiently test if an entry is present, but makes it hard
to enumerate all encoded entries. We improve significantly over previous
work presented at ISC 2006 by Esponda et al. [9], by showing construc-
tions for negative databases reducible to the security of well understood
primitives, such as cryptographic hash functions or the hardness of the
Discrete-Logarithm problem. Our constructions require only O(m) stor-
age in the number m of entries in the database, and linear query time
(compared to O(l · m) storage and O(l · m) query time, where l is a se-
curity parameter.) Our claims are supported by both proofs of security
and experimental performance measurements.

1 Introduction

In a celebrated series of academic papers [8,9], which have also attracted wider
public interest [1], Fernando Esponda et al. introduce the concept of negative
databases to protect the privacy of stored records. A negative database is a
representation of a set of records (the positive database) that allows its holder
to test whether particular entries are present in the database, but makes it very
hard to efficiently enumerate all entries.

Negative databases have a wide range of applications with the potential to
enhance privacy: holders of records cannot easily retrieve all entries, and lost or
compromised machines do not therefore lead to large scale privacy compromises.
As a result, data holders can also share information without fear that the re-
ceiver will be able to extract the full contents of the database. As an example
the Transport Security Administration can provide a black list of passengers as
a negative database to airline companies, who can use it to check whether pas-
sengers to fly with them are on the list. Yet the companies would not be able to
extract the full contents of the database unless they can perform an exhaustive
search on it.

The protocols of Esponda et al. for building negative databases are limited in
many ways, and lead to a database of sizeO(l·m) entries – wherem is the number
of entries in the positive database, and l the size of each entry in bits (with the
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restriction that l > 1000 for security, thus leading to total storage requirement
of O(l2 ·m) bits.) Furthermore, the security of their scheme relies on generating
and not being able to solve hard instances of the 3-SAT problem, which is a
non-standard security assumption in computer security and cryptography (but
note that the 3-SAT problem is NP-complete). For a detailed security analysis
the reader is referred the original papers.

In this work we present two constructions that provide exactly the same
functionality as the original negative database schemes. Our constructions are
computationally efficient for all operations and lead to much more compact
“negative” representations. We prove the security of our constructions using
standard cryptographic reductions to the security of well understood primitives,
such as cryptographic hash functions for our first scheme and the family of
Discrete-Logarithm (DL) assumptions for the second scheme. Experimental re-
sults demonstrate that implementing our first scheme is straightforward and can
efficiently scale to databases of many megabytes.

The rest of the paper is organised as follows: Section 2 presents the background
and related work, including a brief overview of previous designs for negative
databases. Section 3 presents our schemes, based on cryptographic hash functions
and the DL assumptions, with security proofs being presented in Sect. 4. We
evaluate the theoretical and experimental efficiency of the schemes in Sect. 5.
Further privacy enhancing extensions, intrinsic limitations and conclusions are
presented in Sections 6, 7, and 8 respectively.

2 Related Work

The concept of negative databases was introduced by Esponda et al. [8,9]. Each
entry in the database is represented as a bit-string of length l and the set of all
bit strings not in the database is represented in a compact form. The compact
form is a set of l bit-strings of length l each composed of ‘0’s, ‘1’s and wild cards
that could match either (i.e. ‘*’s). To test whether a string is present in the
“positive” database, one checks whether it matches any of the negative entries:
the string is in the positive database if it does not match any of the negative
representations.

The security of the scheme is based on the inability of the adversary to infer
which positive strings are in the database in a way that is more efficient than
enumerating all possible strings and testing them one by one. Esponda et al.
reduce the complexity of breaking the security of their proposal to solving a
hard instance of a 3-SAT problem; they conjecture that the problem becomes
intractable for strings of l > 1000 bits. Their scheme does not allow for multiple
entries to be encoded in a combined way, and therefore they require a negative
database of size O(l) to be generated for each of the m positive entries, leading
to a storage requirement of O(l2 · m) bits. Attempts to represent more than
one positive entry in an integrated manner lead to shortcuts in solving the 3-
SAT problem on which the security of the scheme is based. Dummy entries
representing no string have to be included to obfuscate the size of the positive
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database, and check sums (CRC or MD5 are proposed) are appended to the
positive entries to minimise false positives.

Once constructed, negative databases can be used to efficiently check whether
a particular string, or part of a string, is present in the positive database. The
need to have check sums appended to the entries (to avoid false positives) re-
stricts the ability to query partial contents, and only allows to test whether the
full contents of a particular field are present in some row.

Our constructions for negative databases support the same operations, and we
reduce their security to the security of well known cryptographic primitives, such
as cryptographic hash functions. The idea of applying hash functions in the con-
text of protecting weakly chosen password databases has been proposed before
by Needham et al. [12]. It is now widely adopted to protect the confidentiality
of password files against accidental disclosure or corrupt insiders on most UNIX
systems. Our work starts from this idea but generalises it to database tables with
arbitrary numbers of columns (or fields) per row. We allow complex queries on
such databases, as well as merging databases, and adding and deleting entries.
Our constructions based on discrete-log and related assumptions further allow
any party to prove properties of the entries in the negative database without
revealing any information.

3 Our Schemes

Our goal is to efficiently implement the same functionalities as negative databases
in [10], with cryptographic security guarantees. In order to achieve this, our
schemes should satisfy the following properties, described in [10]:

– Hard to reverse. Given a negative database NDB, there should be no
algorithm for obtaining the positive image DB that is more efficient than
exhaustive search.

– Singleton negative database. Each hard-to-reverse entry in NDB repre-
sents either a string in DB, or no string at all, i.e., reversing the database
does not introduce “false” positive entries.

– Easy to update. There should be efficient algorithms for adding and delet-
ing entries from DB.

– Obfuscated size. The size of the positive image DB should not be visible
from NDB.

– Probabilistic. A particular binary string s ∈ DB should have many possible
representations in NDB.

Esponda et al. mention an additional property [10]:

“String based: One of the more salient features of our scheme is that
it is based on string matching. This permits us to meaningfully affect a
positive image by manipulating the entries of its negative database; ref-
erences [ref17,ref18] discuss some applications of this idea. In the coming
paragraphs we present an operation that illustrates the usefulness of this
property.”
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Algorithm 1. Generating a hard-to-reverse negative database
INPUT: Database DB = {DBi,j}, DBi,j ∈ M, i = 0, . . . , m − 1, j = 0, . . . , n − 1

Function H : R × M �→ T
OUTPUT: Negative database NDB = {NDBi,j} , NDBi,j ∈ R × T
1: Initialize NDB = {}
2: for i = 0 to m − 1 do
3: for j = 0 to n − 1 do
4: Randomly choose ri,j ∈R R
5: Compute NDBi,j = (ri,j , H(ri,j, DBi,j))
6: Set NDB = NDB ∪ {NDBi,j}

Algorithm 2. Obfuscating database size
INPUT: Negative database NDB = {NDBi,j}, NDBi,j ∈ R × T , i = 0, . . . , m − 1,

j = 0, . . . , n − 1
integer d > 0

OUTPUT: Negative database NDB′ ⊃ NDB with d dummy entries
1: Initialize NDB′ = NDB
2: for i = m to m + d − 1 do
3: for j = 0 to n − 1 do
4: Randomly choose ri,j ∈R R, ti,j ∈R T
5: Set NDB′

i,j = (ri,j , ti,j)
6: Set NDB′ = NDB′ ∪ {NDB′

i,j}

Our conversion of DB elements to their negative form involves transformations
that destroy their semantic structure, as opposed to the string based approach
in [10]. Nevertheless, after thorough examination of the examples given in [10]
we have not found any property or functionality provided by the string based
feature that our schemes cannot satisfy. More details on functionalities can be
found in Sect. 6.1.

3.1 Algorithms for Creating, Updating and Searching in NDB

Our negative database construction is based on a one-way function, for which
we propose two alternative implementations: the first is based on cryptographic
hash functions (explained in Sect. 3.3), and the second on the family of discrete
log assumptions (Sect. 3.4). For now, we make an abstraction of the one-way
function and present general algorithms for generating the negative database,
obfuscating its size, and verifying if a string s is in the database.

Let DB be a database that contains m records with n fields each; i.e., a
total of m · n elements. We denote by DBi,j the contents of the element (i, j)
corresponding to the j-th field of the i-th record in DB, and M the universe of
all possible element contents.

From DB, we can efficiently generate NDB following the algorithm shown in
Alg. 1. For each element DBi,j ∈M, we generate a random number ri,j ∈ R. We
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Algorithm 3. Verifying “is s in DB”?
INPUT: Negative database NDB = {NDBi,j} corresponding to DB, NDBi,j ∈ R×T ,

i = 0, . . . , m − 1, j = 0, . . . , n − 1
index k ∈ {0, . . . , n − 1}, value s ∈ M

OUTPUT: Verify if s = DBi,k for some index i
1: for i = 0 to m − 1 do
2: Let NDBi,k = (ri,k, ti,k)
3: if H(ri,k, s) = ti,k then
4: return true
5: return false

define a suitable one-way function H : R×M #→ T that maps a pair of values
(ri,j ,DBi,j) to an element ti,j ∈ T , i.e., ti,j = H(ri,j ,DBi,j). The element NDBi,j

in position (i, j) of the negative database is the tuple (ri,j , ti,j). The randomized
representation of element DBi,j in NDB provides additional security guarantees
(see Sect. 4).

In order to obfuscate the number m of records in DB, we add d dummy entries
to NDB, as shown in Alg. 2. The dummy entries are pairs (ri,j , ti,j) of random ele-
ments fromR×T . We note thatm+d gives an upper bound on the real size of the
database; i.e., DB would be known to contain a maximum of m+ d real records.

Querying NDB in order to check if an element s is in the database is done fol-
lowing Alg. 3. Normally, the user querying the database would want to know if an
element s is present in a given field (e.g., “is name s contained in the names col-
umn?”). In order to do the query, the user provides the string s and the column
k (field) where s is expected to appear. Then, the function H is applied to all
pairs (ri,k, s) to check if the result matches the tag ti,k for some record i. If there
is a match, then we confirm that s is in DB, otherwise the answer is negative.

3.2 Properties of Our System

Although our NDB is not constructed by “negating” DB, we can show that it
has the same functionalities and properties as the negative databases described
in [10]. First, as NDB is constructed using a one-way function, obtaining DB
from NDB is a hard problem. We provide security arguments and proofs of this
property in Sect. 4. From the algorithms for constructing NDB and obfuscating
the size of DB, we can see that (hard-to-reverse) entries in NDB represent either
a string s in DB (if they have been generated by applying the one-way function
to s), or a random dummy string (if they have been randomly generated for
obfuscating the size of DB). The size of the positive image corresponding to
some NDB is obfuscated, since it is hard to distinguish dummy entries from
those that correspond to an element in DB (as proven in Sect. 4). The size of
NDB reveals only an upper bound to the size of DB.

It is very easy to update DB by adding and deleting entries from NDB. It
is sufficient to apply the one way function to the entry, and then add (delete)
its negative image to (from) NDB. Our scheme is probabilistic, as a particular
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binary string s has many possible negative database representations (as many
as possible values for the random ri,j), and the creation process chooses one
uniformly at random. Given two negative database entries, it is hard to determine
if they represent the same value. We prove this property formally in Thm. 3.

3.3 Negative Databases from Cryptographic Hash Functions

Cryptographic hash functions such as SHA-256 [14,16] and RIPEMD-160 [7,14]
are widely used cryptographic primitives. They are compressing functions that
take a variable size input and return a fixed size output (of 256 and 160 bits,
respectively). The key properties of cryptographic hash functions are preimage
and second preimage resistance and collision resistance. Loosely speaking, these
mean that given a hash value h(x) it is difficult to find x; given x, h(x) it is
difficult to find another y such that h(y) = h(x); and it is difficult to find
arbitrary x, y such that h(y) = h(x).

Extensive cryptographic research has gone into understanding the security of
hash functions, with spectacular results demonstrating the insecurity [19] of the
standard MD5 [17] and SHA-1 [14,16] algorithms. The weaknesses concentrate
on the general collision resistance of these functions which is not required to
show the security of our designs, but it is still prudent to migrate to the use of
functions such as SHA-256 and RIPEMD-160 that are still believed to be secure
under all security notions.

Thus, we instantiate the one-way function H with a cryptographic hash-
function h, so that H(ri,j ,DBi,j) = h(ri,j ||DBi,j). In this particular application,
the adversary knows ri,j , hence partial preimage resistance is required to guaran-
tee the hard-to-reverse property. One can prove even stronger properties in the
random oracle model [2]. In this model, practical hash functions are modelled
in an idealized way, that is, as “black-box” functions that output a uniformly
random value as response to every new query. If the random oracle is queried
again with the same input, it outputs the same value as before.

3.4 Negative Databases Based on Discrete-Log and DDH
Assumptions

We propose a second instantiation for the one-way function, this time based
on the hardness of the discrete logarithm problem. Namely, let p be a large
prime and G =<g> a multiplicative group of prime order p. Let Zp be the
additive group of integers modulo p. Then, we set H : G \ {1} × Zp #→ G as
H(gr,m) = grm.

To reason formally about the security of our scheme we have to introduce the
notation of negligibility.

Negligibility: A function f is negligible if for every polynomial P (k), f(k) ≤
1

|P (k)| for all sufficiently large k.

The security of our scheme relies on the discrete-log assumption (where the
security parameter k is the bit-length of p):



Efficient Negative Databases from Cryptographic Hash Functions 429

Discrete-Logarithm (DL) Assumption: For every probabilistic polynomial
time algorithm A, the probability Pr[g ← G;x← Zp;A(p, g, gx)=x] is negligible.

If the DL assumption holds for a group G, then f(x) = gx is a one-way func-
tion. Thus, H can indeed be instantiated with H(gr,m) = grm. Furthermore,
in Sect. 4, we prove additional properties of the NDB under the DDH assumption:

Decisional-Diffie-Hellman (DDH) Assumption: For every probabilistic
polynomial time algorithm A, the probability

|Pr[g ← G;x, y ← Zp;A(p, g, gx, gy, gxy) = 1]−
Pr[g ← G;x, y, z ← Zp;A(p, g, gx, gy, gz) = 1]|

is negligible.

The DDH assumption says that given a tuple (gx, gy, gz), it is computationally
infeasible to decide whether z = xy. Evidently, the DDH assumption implies the
DL assumption.

4 Security Arguments and Proofs

We start by proving that a user can indeed query single values in the negative
database, i.e., that Alg. 3 returns the wrong answer with negligible probability
(in the length of the entries in NDB). In the first construction, the negligible error
probability cannot be avoided if one wants to use a compressing hash function
instead of a bijective function. In the second case, the negligible error is intro-
duced by dummy entries; if the database size is not obfuscated, the algorithm is
always correct.

Theorem 1. Assume that H : R ×M #→ T is a random oracle. Then Alg. 3
returns the correct answer with probability at least 1− m+d

|T | , where m and d are
the number of real and dummy records (rows) in the database, respectively.

Proof. If s = DBi,k is in the database, then the algorithm clearly returns the
correct answer. Assume now that s ∈ M is not in the database. For any en-
try NDBi,k = (ri,k, ti,k), the algorithm incorrectly returns true if and only if
H(ri,k, s) = ti,k. Since the answers of the random oracle are uniformly dis-
tributed, Pr [H(ri,k, s) = ti,k] = 1

|T | , and the result follows from the union
bound. ��

Theorem 2. Let G =<g> be a multiplicative group of prime order |G| = p
generated by g. Define the function H : G \ {1} × Zp #→ G as H(gr,m) = grm.
Then Alg. 3 returns the correct answer with probability at least 1 − d

p , where d
is the number of dummy entries in the database.

Proof. If s = DBi,k is in the database, then the algorithm clearly returns the
correct answer. Assume now that s ∈ Zp is not in the database. For any “real”
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entry DBi,k = s′ �= s (mod p) and corresponding negative entry NDBi,k =
(gri,k , gri,ks′

), the algorithm correctly computes H(gri,k , s) = gri,ks �= gri,ks′
.

For any “dummy” entry NDBi,k = (gri,k , gti,k), the algorithm incorrectly re-
turns true if and only if H(gri,k , s) = gti,k . Since gti,k was drawn uniformly at
random from G, Pr [H(gri,k , s) = gti,k ] = 1

p . The result then follows from the
union bound. ��

Next, we turn our attention to privacy-preserving properties. Since our negative
databases are constructed using one-way functions, obtaining the positive rep-
resentation from the negative one implies breaking the one-wayness assumption.
In particular, the security of our two constructions relies on the (partial) preim-
age resistance of hash functions in the first case, and the hardness of discrete
logarithm in groups of prime order in the second case.

A standard design goal for hash functions is that they should withstand preim-
age attacks faster than exhaustive search. More precisely, let l = log2 |M| be the
length of each entry in the positive database and let r = log2 |R| be the length of
random values. Since values ri,j are known to the adversary, exhaustive search
for inverting a fixed value in NDB takes 2l steps in the worst case (assuming that
all l-bit strings are possible database entries). Inverting the whole NDB takes at
most mn2l steps. However, since the values ri,j are chosen randomly and only
become public when the database is published, full precomputation before seeing
NDB takes 2l+r steps. Concretely, we propose to use random values ri,j of 128–
256 bits to thwart offline attacks. Choosing r ≥ 128 is also sufficient to guarantee
that the random values never repeat: by the Birthday Paradox, collisions only
become likely after O(2r/2) choices.

Moreover, under stronger but still reasonable assumptions, our constructions
benefit from indistinguishability of entries: given two negative database entries
NDBi,j and NDBi′,j′ , a polynomial-time adversary cannot decide with non-
negligible probability whether these entries correspond to the same value in
the positive database, i.e, whether DBi,j = DBi′,j′ . For the first construction,
the result is obvious if we substitute the hash function with a random ora-
cle and assume that random values ri,j never repeat. We now prove the re-
sult for the second case with a tight reduction to the Decisional Diffie-Hellman
assumption.

Theorem 3. Let G =<g> be a multiplicative group of prime order |G| = p
generated by g. Define the function H : G \ {1} × Zp #→ G as H(gr,m) = grm.
Given two NDB entries NDBi,j = (gr, gx), NDBi′,j′ = (gr′

, gx′
), it is computa-

tionally infeasible to decide whether DBi,j = DBi′,j′ (loggr gx = loggr′ gx′
) under

the DDH assumption.

Proof. Given a probabilistic polynomial-time adversary A that can distinguish
between database entries with advantage ε, we construct another adversary B
that can break the DDH assumption with advantage ε.
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Let (gx, gy, gz) be the challenge DDH tuple given to B. We let B randomly
choose r ∈ Zp, construct tuples (gr, gxr) and (gy−r, gz−xr) and send them to A.
It is easy to see that B can solve the DDH problem with advantage ε, since:

loggr gxr = loggy−r gz−xr ⇔ x(y − r) = z − xr ⇔ xy = z. ��

If the adversary has some a priori information about the entry m, fast attacks
such as the baby-step giant-step method for finding the discrete logarithm may
however be possible. We discuss the impact of field entropy on security in Sect. 7.

5 Evaluation

5.1 Efficiency

In this section we discuss the efficiency of our approach, and compare it to [9],
both in terms of space and time complexity.

In the scheme proposed by Esponda et al. [9], positive database (DB) entries
cannot be negatively represented in a global way. Instead, each entry has to be
represented individually by a negative database (NDBi,j). Each of these NDBi,j

has size O(l2), where l is the size of the entry in DB (l > 1000 for security
reasons), as their scheme needs l entries of l bits per entry in the NDB in order
to conceal the positive representation. Assuming that DB contains m entries,
the complete NDB will occupy O(l2 ·m) bits of space.

Our construction, on the contrary, stores only one value per entry in DB,
such that the global size of the final NDB is linear in the size of the original
database, occupying O((t + r) ·m) bits for a positive database with m entries,
where t = log2 |T | is the length of the output of the one-way function H and
r = log2 |R| is the length of the random value. This may even lead to a negative
database that is smaller than the original positive database (when positive entries
are larger than t+ r).

In terms of time complexity, our proposal is more efficient than the original
scheme. For answering the query “Is q in DB?”, the original approach needs to
check every value in every NDB. This takes O(l ·m) time. In our approach, only
m entries need to be checked. Thus, the query response time is linear in the size
of the database, O(tH ·m), depending on the time needed to execute the one-way
function, tH .

Our calculations so far concern entries with a single field. When entries have
multiple fields n, the space complexity increases linearly by the same factor n.
Query time complexity does not increase, provided that the query is restricted
to a single field.

Cryptographic hash functions such as the SHA family are very fast on com-
modity processors, and can achieve speeds of up to 1 Gb/s in dedicated hard-
ware [15]. Modular exponentiation is more expensive on commodity hardware,
but techniques based on the precomputation of some values provide a consider-
able speed-up [3,13]. Specialized hardware achieves a rate of about 50000 expo-
nentiations per second [18].
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5.2 Experimental Results

We have implemented a simulation in Python in order to test the efficiency of
our proposal. In our example, each entry of the database consists of six fields:
name, family name, gender, credit card number, month of expiration and year
of expiration, as shown in Table 1. All of these fields were of length 20 bytes
whereas normally gender, month, year, etc length should be smaller. This gives
us an upper bound on performance (but should have little effect in practice.)
We use SHA-1 [16] as the one-way function to create the negative image of the
database1, with 20-byte values to randomize the output (or r = 160).

Table 1. Database entries

Name Family Gender Credit Card Month of Year of
name Number Expiration Expiration

(a) Time for create a database by size (b) Response time by size of the database

Fig. 1. Simulation results on a 1 GHz Pentium M

First, we tested the time of creation of a database depending on the number
of entries. As shown in Fig. 1(a), the time for creating a database is linear in its
size, and smaller than 5 seconds for a 5000-entry database (with seven 20-byte
fields each).

Our second test measured the response time of our scheme. We assume the
worst case, when the query q is not in DB, thus, all of the entries need to be
checked to give a final negative response. As expected, the time is linear with
the number of entries in the database (see Fig. 1(b)).

1 SHA-1 was chosen for ease of implementation, since it is available in the standard
libraries. Even if current shortcut attacks only reduce the complexity to find col-
lisions, SHA-1 should not be used in production systems. Instead, we recommend
RIPEMD-160 or SHA-256 that have comparable performance characteristics.
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6 Extensions and Discussion

6.1 Intersection of Databases

One of the advantages of negative databases is that they enable organizations
to compare their negative database images without jeopardizing the privacy of
the data subjects, or leaking sensitive information to company outsiders. Our
schemes, in spite of destroying the semantics of the original (positive) database,
support these operations.

For example, users can do private “select and project” operations without
first transmitting the whole NDB. Namely, a user interested in entries that have
a certain value v in field (column) f can request the entries in column f , apply
the one-way function locally to v (salted appropriately with the random values),
and send the indices of matching entries to the owner of NDB. The latter can
then create and send back a new NDB′ of matching entries without learning the
search criterion v. Following the example in [10], authorities can also take an
intersection of two positive DBs without revealing their interests to the database
owners.

6.2 Proving Statements About Entries in Zero-Knowledge

A zero-knowledge proof is an interactive proof in which the verifier learns nothing
except the fact that the statement proven is true. Honest-verifier zero-knowledge
proofs-of-knowledge protocols exist for proving various statements about discrete
logarithms in groups of known order [4,5]. This allows to prove statements about
cryptographic primitives that operate in these groups, for instance the knowledge
of a commitment or the equality of two commitments’ openings. Moreover, note
that it is possible to prove AND and OR relations of these statements [6]. Such
protocols can be made non-interactive by applying a cryptographic technique
called the Fiat-Shamir heuristic [11].

These proof methods are directly applicable to our scheme. Our construction
for negative databases based on the Discrete-Logarithm problem allows the par-
ties who know the positive entries, or the data subjects themselves to efficiently
prove statements about entries without revealing any information about their
positive representations. For example, a user can prove that two entries corre-
spond to his username, and that the sum of two fields is less than a certain thresh-
old. Similarly one can prove that the entry coresponding to their age is larger
than a certain minimum age, to gain access some age restricted information.

7 Limitations of Negative Databases

By their very design and properties negative databases have some limitations,
and should be used with due care as part of larger privacy enhancing systems. As
we have seen, a user can query whether a particular record field value is present
or not in the positive database given only the negative representation. Such a
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user can only extract additional information by exhaustively enumerating all
possible entries.

For many real world databases this may represent a severe weakness. Typi-
cal records will include fields that have little variance, such as ‘gender’ (usually
binary) or ‘date of birth’ (that contains about 7 bits of entropy.) Even fields pop-
ulated with elements from a theoretically large space, such as names or surnames,
may be efficiently enumerated by an adversary that has access to additional in-
formation such as population registers or electoral rolls, that are often public.
Therefore, by design, a negative database cannot hide such fields.

Many strategies are possible to protect negative databases against such effi-
cient enumeration attacks. The first strategy is to systematically aggregate low
entropy fields into larger fields. This makes it harder for an adversary to guess
them correctly, since the full guess much match, but also does not allow for
searches and joins on specific fields.

A second approach would be to include with each low entropy field a high
entropy key that is specific to the individual referred to by the field (such as a
social security number, or a passport number.) Queries to the database would
then need to be appended by the key to be successful, restricting the ability
to find records to those that know individuals well enough to have their corre-
sponding key.

8 Conclusion

We have shown practical and efficient schemes to implement negative databases.
The security of these schemes is reduced to well understood cryptographic as-
sumptions that have been the subject of considerable scrutiny in the literature.
These schemes only occupy O(m) space and queries are performed in O(m) time,
in comparison with the O(m · l) space and time complexity for the original pro-
posal. For very large fields our schemes could even achieve a compression of the
original database. Records with multiple fields only increase the cost of storage
and queries linearly.

The first scheme we show is based on the security of hash functions. Our non-
optimised implementation allows for fast queries, with about 2 milliseconds per
query for a database of 5000 elements (in worst case queries, i.e. the searched
string was not in the NDB.) The query times increase only linearly with the
number of entries and we expect that optimised implementation could be used
in industrial strength deployed systems to protect privacy. Integrating ‘negative’
tables in widely deployed Relational Database Managment Systems (RDBMS)
would be a significant step forward in deploying privacy enhancing technologies,
and our proposal is efficient and economical enough to be the basis for such
deployment.

The second construction we propose, based on the DL related assumptions,
is less efficient in space and slower than the first. Its advantage is that it can
be used by any party knowing the content of some fields to prove a wide range
of statements about them in Zero-Knowledge. This allows for building protocols
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that offer even higher levels of privacy protection than in the original nega-
tive databases proposals. The cost of doing multiple exponentiation is still pro-
hibitive on commodity hardware to allow for wide deployment of this protocols.
Yet servers using standard cryptographic hardware could still benefit from its
additional properties.
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